(2010•莆田)A(x1,y1)、B(x2,y2)是一次函數(shù)y=kx+2(k>0)圖象上不同的兩點(diǎn),若t=(x1-x2)(y1-y2),則( )
A.t<0
B.t=0
C.t>0
D.t≤0
【答案】分析:將A(x1,y1)、B(x2,y2)代入一次函數(shù)y=kx+2(k>0)的解析式,根據(jù)非負(fù)數(shù)的性質(zhì)和k的值大于0解答.
解答:解:∵A(x1,y1)、B(x2,y2)是一次函數(shù)y=kx+2(k>0)圖象上不同的兩點(diǎn),
∴x1-x2≠0,
∴y1=kx1+2,y2=kx2+2
則t=(x1-x2)(y1-y2
=(x1-x2)(kx1+2-kx2-2)
=(x1-x2)k(x1-x2
=k(x1-x22
∵x1-x2≠0,
k>0,
∴k(x1-x22>0,
∴t>0,
故選C.
點(diǎn)評(píng):本題考查一定經(jīng)過某點(diǎn)的函數(shù)應(yīng)適合這個(gè)點(diǎn)的橫縱坐標(biāo).代入解析式后,根據(jù)式子特點(diǎn),利用非負(fù)數(shù)的性質(zhì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年全國(guó)中考數(shù)學(xué)試題匯編《圖形的對(duì)稱》(04)(解析版) 題型:解答題

(2010•莆田)如圖1,在平面直角坐標(biāo)系xOy中,矩形OABC的邊OA在y軸的正半軸上,OC在x軸的正半軸上,OA=1,OC=2,點(diǎn)D在邊OC上且OD=
(1)求直線AC的解析式;
(2)在y軸上是否存在點(diǎn)P,直線PD與矩形對(duì)角線AC交于點(diǎn)M,使得△DMC為等腰三角形?若存在,直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
(3)拋物線y=-x2經(jīng)過怎樣平移,才能使得平移后的拋物線過點(diǎn)D和點(diǎn)E(點(diǎn)E在y軸的正半軸上),且△ODE沿DE折疊后點(diǎn)O落在邊AB上O′處.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2010•莆田)如圖1,在平面直角坐標(biāo)系xOy中,矩形OABC的邊OA在y軸的正半軸上,OC在x軸的正半軸上,OA=1,OC=2,點(diǎn)D在邊OC上且OD=
(1)求直線AC的解析式;
(2)在y軸上是否存在點(diǎn)P,直線PD與矩形對(duì)角線AC交于點(diǎn)M,使得△DMC為等腰三角形?若存在,直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
(3)拋物線y=-x2經(jīng)過怎樣平移,才能使得平移后的拋物線過點(diǎn)D和點(diǎn)E(點(diǎn)E在y軸的正半軸上),且△ODE沿DE折疊后點(diǎn)O落在邊AB上O′處.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(03)(解析版) 題型:填空題

(2010•莆田)某同學(xué)利用描點(diǎn)法畫二次函數(shù)y=ax2+bx+c(a≠0)的圖象時(shí),列出的部分?jǐn)?shù)據(jù)如下表:經(jīng)檢查,發(fā)現(xiàn)表格中恰好有一組數(shù)據(jù)計(jì)算錯(cuò)誤,請(qǐng)你根據(jù)上述信息寫出該二次函數(shù)的解析式:   
x1234
y3-23

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年福建省莆田市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•莆田)如圖1,在平面直角坐標(biāo)系xOy中,矩形OABC的邊OA在y軸的正半軸上,OC在x軸的正半軸上,OA=1,OC=2,點(diǎn)D在邊OC上且OD=
(1)求直線AC的解析式;
(2)在y軸上是否存在點(diǎn)P,直線PD與矩形對(duì)角線AC交于點(diǎn)M,使得△DMC為等腰三角形?若存在,直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
(3)拋物線y=-x2經(jīng)過怎樣平移,才能使得平移后的拋物線過點(diǎn)D和點(diǎn)E(點(diǎn)E在y軸的正半軸上),且△ODE沿DE折疊后點(diǎn)O落在邊AB上O′處.

查看答案和解析>>

同步練習(xí)冊(cè)答案