(1)請(qǐng)把圖中的四邊形ABCD先向左平移6個(gè)單位,再向下平移8個(gè)單位,畫出平移后的四邊形,作業(yè)寶并指出四邊形ABCD中各頂點(diǎn)的坐標(biāo);
(2)畫出四邊形ABCD關(guān)于x軸的對(duì)稱圖形,并求出四邊形ABCD的面積.

解:(1)如圖,A(2,2)B(4,2)C(6,6)D(0,6);
(2)如圖,S四邊形ABCD==16.
分析:(1)根據(jù)平移的性質(zhì)作出圖形,即平移四個(gè)頂點(diǎn)即可;
(2)根據(jù)對(duì)稱的性質(zhì)作出圖形,即作出四個(gè)頂點(diǎn)關(guān)于x軸的對(duì)稱點(diǎn)即可;四邊形ABCD為梯形,由梯形的面積公式求解即可.
點(diǎn)評(píng):本題考查了平移變換以及軸對(duì)稱變換,注:作出四個(gè)頂點(diǎn)的對(duì)應(yīng)變換即作出了該圖形的這種變換.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,邊長為a的正六邊形ABCDEF.
(1)把這個(gè)正六邊形ABCDEF分成8個(gè)全等的直角梯形,請(qǐng)畫出示意圖;
(2)求(1)中直角梯形的四邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

佛山市的名片----“一環(huán)”路全長約為99公里,其中:東線長36公里,西線長32公里,南線長15公里,北線長15.6公里(為計(jì)算方便,以上數(shù)據(jù)與實(shí)際稍有出入)
小明同學(xué)想根據(jù)以上信息估算“一環(huán)”路的環(huán)內(nèi)面積,他把佛山“一環(huán)”路的形狀理想化為一個(gè)四邊形進(jìn)行研究,他想到的圖形有如下四種:
精英家教網(wǎng)
(1)如果讓你來研究,你會(huì)選擇哪個(gè)圖形?(注:圖3中AD∥BC)
請(qǐng)你利用選定的圖形,把所給信息中的三個(gè)數(shù)據(jù)作為其中三邊的長,計(jì)算出第四邊的長,并比較它與實(shí)際長的誤差是多少?
參考數(shù)據(jù):
241
=15.53,
209
=14.46,
227.36
=15.08,
18.36
=4.28.
(2)假設(shè)邊長的誤差在0.5公里以內(nèi),就可以用所選擇的圖形近似計(jì)算環(huán)內(nèi)面積.你選擇的圖形是否符合以上?假設(shè)若符合,請(qǐng)計(jì)算出環(huán)內(nèi)面積.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

29、閱讀探究題:數(shù)學(xué)課上,張老師向大家介紹了等腰三角形的基本知識(shí):有兩條邊相等的三角形叫等腰三角形,如圖1所示:在△ABC中,若AB=AC,則△ABC為等腰三角形且有∠B=∠C.此時(shí),張老師出示了問題:如圖2,四邊形ABCD是正方形(正方形的四邊相等,四個(gè)角都是直角),點(diǎn)E是邊BC的中點(diǎn).∠AEF=90°,且EF交∠DCG的平分線CF于點(diǎn)F,求證:AE=EF.經(jīng)過思考,小明展示了一種正確的解題思路:在線段AB上取AB的中點(diǎn)M,連接ME,則AM=EC,在此基礎(chǔ)上,請(qǐng)聰明的同學(xué)們作進(jìn)一步的研究:
(1)求出角∠AME的度數(shù);
(2)你能在小明的思路下證明結(jié)論嗎?
(3)小穎提出:如圖3,如果把“點(diǎn)E是邊BC的中點(diǎn)”改為“點(diǎn)E是邊BC上(除B,C外)的任意一點(diǎn)”,其它條件不變,那么結(jié)論“AE=EF”仍然成立,你認(rèn)為小穎的觀點(diǎn)正確嗎?如果正確,寫出證明過程;如果不正確,請(qǐng)說明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如果四邊形中一對(duì)頂點(diǎn)到另一對(duì)頂點(diǎn)所連對(duì)角線的距離相等,則把這對(duì)頂點(diǎn)叫做這個(gè)四邊形的一對(duì)等高點(diǎn).
例如:如圖1,平行四邊形ABCD中,可證點(diǎn)A、C到BD的距離相等,所以點(diǎn)A、C是平行四邊形ABCD的一對(duì)等高點(diǎn),同理可知點(diǎn)B、D也是平行四邊形ABCD的一對(duì)等高點(diǎn).
(1)已知平行四邊形ABCD,請(qǐng)你在兩個(gè)備用圖中分別畫出一個(gè)只有一對(duì)等高點(diǎn)的四邊ABCE,其中E點(diǎn)分別在四邊形ABCD的形內(nèi)、形外(要求:畫出必要的輔助線);
(2)如圖2,P是四邊形ABCD對(duì)角線BD上任意一點(diǎn)(不與B、D點(diǎn)重合),S1、S2、S3、S4分別表示△ABP、△CBP、△ADP、△CDP的面積.若四邊形ABCD只有一對(duì)等高點(diǎn)A、C,S1、S2、S3、S4四者之間的等量關(guān)系如何?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(08)(解析版) 題型:解答題

(2007•佛山)佛山市的名片----“一環(huán)”路全長約為99公里,其中:東線長36公里,西線長32公里,南線長15公里,北線長15.6公里(為計(jì)算方便,以上數(shù)據(jù)與實(shí)際稍有出入)
小明同學(xué)想根據(jù)以上信息估算“一環(huán)”路的環(huán)內(nèi)面積,他把佛山“一環(huán)”路的形狀理想化為一個(gè)四邊形進(jìn)行研究,他想到的圖形有如下四種:

(1)如果讓你來研究,你會(huì)選擇哪個(gè)圖形?(注:圖3中AD∥BC)
請(qǐng)你利用選定的圖形,把所給信息中的三個(gè)數(shù)據(jù)作為其中三邊的長,計(jì)算出第四邊的長,并比較它與實(shí)際長的誤差是多少?
參考數(shù)據(jù):=15.53,=14.46,=15.08,=4.28.
(2)假設(shè)邊長的誤差在0.5公里以內(nèi),就可以用所選擇的圖形近似計(jì)算環(huán)內(nèi)面積.你選擇的圖形是否符合以上?假設(shè)若符合,請(qǐng)計(jì)算出環(huán)內(nèi)面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案