已知(x2+mx+n)(x2-3x+2)的展開式中不含x2項和x項,則m=
6
7
6
7
,n=
4
7
4
7
分析:根據(jù)多項式乘以多項式的法則,可表示為(x2+mx+n)(x2-3x+2)=x4-(3-m)x3+(2+n-3m)x2+(2m-3n)x+2n,再令 x2和x項系數(shù)為0,計算即可.
解答:解:(x2+mx+n)(x2-3x+2)=x4-(3-m)x3+(2+n-3m)x2+(2m-3n)x+2n,
∵(x2+mx+n)(x2-3x+2)的展開式中不含x2項和x項,
則有
2+n-3m=0
2m-3n=0

解得
m=
6
7
n=
4
7

故答案為:
6
7
,
4
7
點評:本題主要考查多項式乘以多項式的法則.注意不要漏項,漏字母,有同類項的合并同類項.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知方程x2-mx+4=0的兩個實根相等,那么m=
±4
±4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知y=x2+mx-6,當(dāng)1≤m≤3時,y<0恒成立,那么實數(shù)x的取值范圍是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知(x2+mx+n)(x+1)的結(jié)果中不含x2項和x項,求m,n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:x2+mx+n=(x-2)(x-3)
(1)求m,n的值.
(2)求m(2m-3n)(2m+3n)-(m-3n)(m2+9n2)-(2m2-n2)(m+2n)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:x2+mx+n乘以x+2得到積是x3+2x+12,求m,n的值.

查看答案和解析>>

同步練習(xí)冊答案