【題目】1)如圖1,已知以ABC的邊AB、AC分別向外作等腰直角ABD與等腰直角ACE,∠BAD=CAE=90°,連接BECD相交于點O,ABCD于點FACBE于點G,求證:BE=DC,且BEDC

2)探究:若以ABC的邊AB、AC分別向外作等邊ABD與等邊ACE,連接BECD相交于點OABCD于點F,ACBEG,如圖2,則BEDC還相等嗎?若相等,請證明,若不相等,說明理由;并請求出∠BOD的度數(shù)?

【答案】1)見解析;(2)∠BOD =60°

【解析】

1)根據(jù)等腰直角三角形的性質,結合題意,由全等三角形的判斷方法(SAS)得到三角形全等,再由全等三角形的性質得出答案;

2)根據(jù)等邊三角形的性質得出AD=ABAE=AC,∠ACE=AEC=60°,∠DAB=EAC=60°,求出∠DAC=BAE,根據(jù)SAS推出△DAC≌△BAE,根據(jù)全等三角形的性質得出∠BEA=ACD,求出∠BOC=ECO+OEC=ACE+AEC,代入求出即可.

1)證明:∵△ABD和△ACE都是等腰直角三角形,

AB=AD,AE=AC

又∵∠BAD=CAE=90°,

∴∠BAD+BAC=CAE+BAC,即∠DAC=BAE,

在△ABE和△ADC中,

,

∴△ABE≌△ADCSAS,

BE=DC,ABE=ADC,

又∵∠BFO=DFA,∠ADF+DFA=90°,

∴∠ABE+BFO=90°,

∴∠BOF=DAF=90,

BEDC

2)解:結論:BE=CD

理由:如圖2,∵以AB、AC為邊分別向外做等邊△ABD和等邊△ACE

AD=AB,AE=AC,∠ACE=AEC=60°,∠DAB=EAC=60°

∴∠DAB+BAC=EAC+BAC,

∴∠DAC=BAE,

在△DAC和△BAE中,

,

∴△DAC≌△BAESAS),

CD=BE,∠BEA=ACD,

∴∠BOC=ECO+OEC

=DCA+ACE+OEC

=BEA+ACE+OEC

=ACE+AEC

=60°+60°

=120°

∴∠BOD=180°-BOC=60°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列推理過程,在括號中填寫理由.

如圖,E點為DF上的點,B為AC上的點,∠1=∠2,∠C=∠D.試說明:AC∥DF.

解:∵∠1=∠2(已知),∠1=∠3______________,

∴∠2=∠3___________________

______________________________________

∴∠C=∠ABD ________________________________

又∵∠C=∠D____________,

∴∠D=∠ABD(等量代換)

∴AC∥DF______________________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的圖象經(jīng)過點A3,6)、Bm0)、C3,0),并且m3D為拋物線的頂點.

(1)求b,c,m的值;

(2)設點P是線段OC上一點,點O是坐標原點,且滿足∠PDC=BAC,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,連接BD,且BDCD,過點AAMBD于點M,過點DDNAB于點N,且DN4,在DB的延長線上取一點P,滿足∠ABD=∠MAP+∠PAB,則AP______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,我們把橫、縱坐標都是整數(shù)的點叫做整點.如圖,已知⊙O的半徑為5,則拋物線與該圓所圍成的陰影部分(不包括邊界)的整點個數(shù)是(

A. 24 B. 23 C. 22 D. 21

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】元旦前夕,湖州吳興某工藝廠設計了一款成本10/件的工藝品投放市場試銷.試銷發(fā)現(xiàn),每天銷售量y(件)與銷售單價x(元/件)之間的關系可近似地看作一次函數(shù):y=-10x+700. (利潤=銷售總價-成本總價)

如果該廠想要每天獲得5000元的利潤,那么銷售單價應定為多少元/件?

當銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤最大?最大利潤是多少?

湖州市物價部門規(guī)定,該工藝品銷售單價最高不能超過38/件,那么銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤最大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Py軸上,Px軸于A,B兩點,連接BP并延長交⊙P于點C,過點C的直線y=2x+bx軸于點D,且⊙P的半徑為,AB=4.

(1)求點B,P,C的坐標;

(2)求證:CD是⊙P的切線

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線ykxkk≠0與雙曲線在第一象限內相交于點Mx軸交于點A

1m的取值范圍和點A的坐標;

2若點B的坐標為3,0),AM5,SABM8,求雙曲線的函數(shù)表達式

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,某花園護欄是用直徑為的半圓形條鋼組制而成,且每增加一個半圓形條鋼,護欄長度增加,設半圓形條鋼的個數(shù)為(為正整數(shù)),護欄總長度為

1)若

①當時,y=______

②寫出之間的函數(shù)關系式為_______

2)若護欄總長度為,則當時,所用半圓形條鋼個數(shù)為_______

3)若護欄總長度不變,則當時,用了個半圓形條鋼;當時,用了個半圓形條鋼.請求出之間的關系式.

查看答案和解析>>

同步練習冊答案