如圖,點(diǎn)P是半徑為6的⊙O外一點(diǎn),過(guò)點(diǎn)P作⊙O的割線PAB,點(diǎn)C是⊙O上一點(diǎn),且PC2=PA•PB.求證:
(1)PC是⊙O的切線;
(2)若sin∠ACB=,求弦AB的長(zhǎng);
(3)已知在(2)的條件下,點(diǎn)D是劣弧AB的中點(diǎn),連接CD交AB于E,若AC:BC=1:3,求CE的長(zhǎng).

【答案】分析:(1)連接CO并延長(zhǎng)交⊙O于M,連接AM,根據(jù)兩組對(duì)應(yīng)邊的比相等且相應(yīng)的夾角相等的兩個(gè)三角形相似得到△PAC∽△PCB,從而得到∠PCA=∠B,再根據(jù)角之間的關(guān)系可得到CM⊥PC即PC是⊙O的切線;
(2)連接AO,并延長(zhǎng)AO交⊙O于N,連接BN,根據(jù)同弧所對(duì)角相等得到∠N=∠ACB,已知AN的長(zhǎng)及sin∠ACB的值,根據(jù)三角函數(shù)公式即可求得AB的長(zhǎng);
(3)連接OD交AB于F,由已知可推出△PCA∽△PBC,根據(jù)對(duì)應(yīng)邊的相似比相等可求得PA,PC的長(zhǎng),再根據(jù)勾股定理求得OF的長(zhǎng),那么再求CE的長(zhǎng)就不難了.
解答:(1)證明:連接CO并延長(zhǎng)交⊙O于M,連接AM,
∵PC2=PA•PB,

∵∠P=∠P,
∴△PAC∽△PCB,∠PCA=∠B.
∵∠B=∠M,
∴∠M=∠PCA.
∵CM是直徑,
∴∠MAC=90°.
∴∠ACM+∠M=90°.
∴∠ACM+∠PCA=90°.
即∠PCM=90°.
∴CM⊥PC.
∴PC是⊙O的切線.

(2)解:連接AO,并延長(zhǎng)AO交⊙O于N,連接BN,
∵AN是直徑,
∴∠ABN=90°∠N=∠ACB,AN=12.
在Rt△ABN中,AB=ANsin∠ACB=12sin∠ACB=12×=

(3)解:連接OD交AB于F,
∴OD⊥AB.
∵D是劣弧AB的中點(diǎn),
∴∠ACD=∠BCD.
∵∠PCA=∠B,
∴∠PCE=∠PEC.
∴PC=PE由△PCA∽△PBC得PC=3PA.
∵PC2=PA•PB,
∴9PA2=PA•PB.
∴9PA=PB=PA+AB.
∴8PA=AB=
∴PA=
∴PC=PE=
AE=,AB=,AF=,EF=
在Rt△OAF中,可求得OF=4,
∴DF=OD-OF=6-4=2,
∴DE=3.
∵AE•EB=DE•CE,
∴CE=5.
點(diǎn)評(píng):此題主要考查學(xué)生對(duì)切線的判定,解直角三角形及相似三角形的判定等知識(shí)點(diǎn)的綜合運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,點(diǎn)P是半徑為5cm的⊙O外的一點(diǎn),OP=13cm;PT切⊙O于T點(diǎn),過(guò)P精英家教網(wǎng)點(diǎn)作⊙O的割線PAB(PB>PA).設(shè)PA=x,PB=y.
(1)求y關(guān)于x的函數(shù)解析式,并確定自變量x的取值范圍;
(2)這個(gè)函數(shù)有最大值嗎?若有,求出此時(shí)△PBT的面積;若沒(méi)有,請(qǐng)說(shuō)明理由;
(3)是否存在這樣的割線PAB,使得S△PAT=
12
S△PBT?若存在,請(qǐng)求出PA的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,點(diǎn)A是半徑為
8
π
cm的⊙O上一點(diǎn),現(xiàn)有動(dòng)點(diǎn)P、Q同時(shí)從點(diǎn)A出發(fā),分別以3cm/秒,1cm/秒的速度沿圓周作順時(shí)針和逆時(shí)針?lè)较蜻\(yùn)動(dòng),那么下列結(jié)論錯(cuò)誤的是( 。
A、當(dāng)P,Q兩點(diǎn)運(yùn)動(dòng)到1秒時(shí),弦長(zhǎng)PQ=
8
π
2
cm
B、當(dāng)點(diǎn)P第一次回到出發(fā)點(diǎn)A時(shí)所用時(shí)間為
16
3
C、當(dāng)P,Q兩點(diǎn)從開(kāi)始運(yùn)動(dòng)到第一次成為最大弦時(shí),所用的時(shí)間為2秒
D、當(dāng)P,Q兩點(diǎn)從開(kāi)始運(yùn)動(dòng)到第一次成為最大弦時(shí),過(guò)點(diǎn)A作⊙O的切線與PQ的延長(zhǎng)交于M,則MA長(zhǎng)為
π
8
cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

8、如圖,點(diǎn)P是半徑為5的⊙O內(nèi)一點(diǎn),且OP=3.過(guò)點(diǎn)P任作一條弦AB,則弦AB的長(zhǎng)不可能為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,點(diǎn)P是半徑為5的⊙O內(nèi)一點(diǎn),且弦AB⊥OP,OP=3,則弦AB長(zhǎng)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,點(diǎn)M是半徑為5的⊙O內(nèi)一點(diǎn),且OM=3,在過(guò)點(diǎn)M的所有⊙O的弦中,弦長(zhǎng)為偶數(shù)的弦的條數(shù)為(  )
A、2B、3C、4D、5

查看答案和解析>>

同步練習(xí)冊(cè)答案