分析 (1)設(shè)FG與NE交點(diǎn)為H點(diǎn),AB與NE的交點(diǎn)I,點(diǎn)在△HNG中由三角形內(nèi)角和定理可知∠G+∠HNG+∠NHG=180°,再由MF平分∠AME,NE平分∠CNG,2∠E+∠G=90°可得出90°+$\frac{1}{2}$∠AME=180°,由此可得出結(jié)論;
(2)根據(jù)PQ平分∠MPN,NH平分∠PNC可得出∠JPQ=∠JPN-$\frac{1}{2}$∠MPN,由此得出結(jié)論.
解答 解:(1)如圖,設(shè)FG與NE交點(diǎn)為H點(diǎn),AB與NE的交點(diǎn)I,
在△HNG中,∵∠G+∠HNG+∠NHG=180°
∴∠HNG=∠AIE=∠IHM+∠IMH=(∠E+∠EMF)+∠IMH=∠E+(∠EMF+∠IMH )=∠E+∠AME
∠NHG=∠IHM=∠E+∠EMF=∠E+$\frac{1}{2}$∠AME
∴∠G+∠HNG+∠NHG=∠G+(∠E+∠AME)+(∠E+$\frac{1}{2}$∠AME)=180° (∠G+2∠E)+$\frac{3}{2}$∠AME=180°,即90°+$\frac{3}{2}$∠AME=180°,
∴∠AME=60°;
(2)∠JPQ的度數(shù)不改變,
∵PQ平分∠MPN,NH平分∠PNC,
∴∠JPQ=∠JPN-$\frac{1}{2}$∠MPN
=$\frac{1}{2}$(∠ENC-$\frac{1}{2}$∠MPN)
=$\frac{1}{2}$(∠AOE-$\frac{1}{2}$∠MPN)
=$\frac{1}{2}$∠AME
=30°.
點(diǎn)評(píng) 本題考查的是平行線的性質(zhì),涉及到三角形外角的性質(zhì)、角平分線的性質(zhì)及三角形內(nèi)角和定理,難度較大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 方差反映的是一組數(shù)據(jù)的波動(dòng)大小,方差的值一定是正數(shù) | |
B. | 已知一組數(shù)據(jù)的方差計(jì)算公式為s2=$\frac{1}{5}$(x12+x22+x32+x42+x52-20),則這組數(shù)據(jù)的平均數(shù)為4 | |
C. | 數(shù)據(jù)1,2,2,3,3,4的眾數(shù)是2 | |
D. | 一組數(shù)據(jù)x1,x2,x3,…xn,都減去a值的平均數(shù)為m,方差為n,則這組數(shù)據(jù)的平均數(shù)為a+m,方差為n |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com