已知:在平面直角坐標系中,拋物線y=-
1
4
x2+bx+3
交x軸于A、B兩點,交y軸于點C,且對稱軸為x=-2,點P(0,t)是y軸上的一個動點.

(1)求拋物線的解析式及頂點D的坐標.
(2)如圖1,當0≤t≤4時,設(shè)△PAD的面積為S,求出S與t之間的函數(shù)關(guān)系式;S是否有最小值?如果有,求出S的最小值和此時t的值.
(3)如圖2,當點P運動到使∠PDA=90°時,Rt△ADP與Rt△AOC是否相似?若相似,求出點P的坐標;若不相似,說明理由.
(1)對稱軸為x=-
b
2×(-
1
4
)
=-2,
解得b=-1,
所以,拋物線的解析式為y=-
1
4
x2-x+3,
∵y=-
1
4
x2-x+3=-
1
4
(x+2)2+4,
∴頂點D的坐標為(-2,4);

(2)令y=0,則-
1
4
x2-x+3=0,
整理得,x2+4x-12=0,
解得x1=-6,x2=2,
∴點A(-6,0),B(2,0),
如圖1,過點D作DE⊥y軸于E,
∵0≤t≤4,
∴△PAD的面積為S=S梯形AOED-S△AOP-S△PDE,
=
1
2
×(2+6)×4-
1
2
×6t-
1
2
×2×(4-t),
=-2t+12,
∵k=-2<0,
∴S隨t的增大而減小,
∴t=4時,S有最小值,最小值為-2×4+12=4;

(3)如圖2,過點D作DF⊥x軸于F,
∵A(-6,0),D(-2,4),
∴AF=-2-(-6)=4,
∴AF=DF,
∴△ADF是等腰直角三角形,
∴∠ADF=45°,
由二次函數(shù)對稱性,∠BDF=∠ADF=45°,
∴∠PDA=90°時點P為BD與y軸的交點,
∵OF=OB=2,
∴PO為△BDF的中位線,
∴OP=
1
2
DF=2,
∴點P的坐標為(0,2),
由勾股定理得,DP=
(-2-0)2+(4-2)2
=2
2
,
AD=
2
AF=4
2
,
AD
DP
=
4
2
2
2
=2,
令x=0,則y=3,
∴點C的坐標為(0,3),OC=3,
OA
OC
=
6
3
=2,
AD
DP
=
OA
OC
,
又∵∠PDA=90°,∠COA=90°,
∴Rt△ADPRt△AOC.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,直線y=x+3與坐標軸分別交于A,B兩點,拋物線y=ax2+bx-3a經(jīng)過點A,B,頂點為C,連接CB并延長交x軸于點E,點D與點B關(guān)于拋物線的對稱軸MN對稱.
(1)求拋物線的解析式及頂點C的坐標;
(2)求證:四邊形ABCD是直角梯形.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,已知拋物線y=-
5
4
x2+bx+c經(jīng)過點A(0,1)、B(3,
5
2
)兩點,BC⊥x軸,垂足為C.點P是線段AB上的一動點(不與A,B重合),過點P作x軸的垂線交拋物線于點M,設(shè)點P的橫坐標為t.
(1)求此拋物線的函數(shù)表達式;
(2)連結(jié)AM、BM,設(shè)△AMB的面積為S,求S關(guān)于t的函數(shù)關(guān)系式,并求出S的最大值;
(3)連結(jié)PC,當t為何值時,四邊形PMBC是菱形?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,已知拋物線y=ax2-2ax+b經(jīng)過梯形OABC的四個頂點,若BC=10,梯形OABC的面積為18.
(1)求拋物線解析式;
(2)將圖1中梯形OABC的上下底邊所在的直線OA、CB以相同的速度同時向上平移,平移后的兩條直線分別交拋物線于點O1、A1、C1、B1,得到如圖2的梯形O1A1B1C1.設(shè)梯形O1A1B1C1的面積為S,A1、B1的坐標分別為(x1,y1)、(x2,y2).用含S的代數(shù)式表示x2-x1,并求出當S=36時點A1的坐標;
(3)如圖3,設(shè)圖1中點D坐標為(1,3),M為拋物線的頂點,動點P從點B出發(fā),以每秒1個單位長度的速度沿著線段BC運動,動點Q從點D出發(fā),以與點P相同的速度沿著線段DM運動.P、Q兩點同時出發(fā),當點Q到達點M時,P、Q兩點同時停止運動.設(shè)P、Q兩點的運動時間為t,是否存在某一時刻t,使得直線PQ、直線AB、x軸圍成的三角形與直線PQ、直線AB、拋物線的對稱軸圍成的三角形相似?若存在,請求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

一男生推鉛球,鉛球在運動過程中,高度不斷發(fā)生變化.已知當鉛球飛出的水平距離為x時,其高度為(-
1
12
x2+
2
3
x+
5
3
)
米,則這位同學推鉛球的成績?yōu)椋ā 。?table style="margin-left:0px;width:650px;">A.9米B.10米C.11米D.12米

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,某小區(qū)要修建一塊矩形綠地,設(shè)矩形的長為x米,寬為y米,且x>y.
(1)如果用18米的建筑材料來修建綠地的邊框(即周長),求y與x的函數(shù)關(guān)系式,并求出x的取值范圍;
(2)現(xiàn)根據(jù)小區(qū)的規(guī)劃要求,所修建的矩形綠地面積必須是18平方米,在滿足(1)的條件下,問矩形的長和寬各為多少米?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖:矩形ABCD的頂點B、C在x軸的正半軸上,A、D在拋物線y=-
2
3
x2+
8
3
x上,矩形的頂點均為動點,且矩形在拋物線與x軸圍成的區(qū)域里.
(1)設(shè)點A的坐標為(x,y),試求矩形的周長p關(guān)于變量x的函數(shù)的解析式,并寫出x的取值范圍;
(2)是否存在這樣的矩形ABCD,它的周長p=9?試證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某工廠生產(chǎn)一種合金薄板(其厚度忽略不計),這些薄板的形狀均為正方形,邊長在(單位:cm)在5~50之間.每張薄板的成本價(單位:元)與它的面積(單位:cm2)成正比例,每張薄板的出廠價(單位:元)有基礎(chǔ)價和浮動價兩部分組成,其中基礎(chǔ)價與薄板的大小無關(guān),是固定不變的.浮動價與薄板的邊長成正比例.在營銷過程中得到了表格中的數(shù)據(jù).
薄板的邊長(cm)2030
出廠價(元/張)5070
(1)求一張薄板的出廠價與邊長之間滿足的函數(shù)關(guān)系式;
(2)已知出廠一張邊長為40cm的薄板,獲得的利潤為26元(利潤=出廠價-成本價),
①求一張薄板的利潤與邊長之間滿足的函數(shù)關(guān)系式.
②當邊長為多少時,出廠一張薄板所獲得的利潤最大?最大利潤是多少?
參考公式:拋物線:y=ax2+bx+c(a≠0)的頂點坐標為(-
b
2a
,
4ac-b2
4a

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,矩形ABCD中,AB=8,BC=10,點P在矩形的邊DC上由D向C運動.沿直線AP翻折△ADP,形成如下四種情形.設(shè)DP=x,△ADP和矩形重疊部分(陰影)的面積為y.

(1)如圖丁,當點P運動到與C重合時,求重疊部分的面積y;
(2)如圖乙,當點P運動到何處時,翻折△ADP后,點D恰好落在BC邊上這時重疊部分的面積y等于多少?
(3)閱讀材料:已知銳角α≠45°,tan2α是角2α的正切值,它可以用角α的正切值tanα來表示,即tan2α=
2tanα
1-(tanα)2
(α≠45°).根據(jù)上述閱讀材料,求出用x表示y的解析式,并指出x的取值范圍.
(提示:在圖丙中可設(shè)∠DAP=a)

查看答案和解析>>

同步練習冊答案