10°
分析:由將△ACB繞點C順時針旋轉得到△DCE,即可得△ACB≌△DCE,則可得∠E=∠ABC,△BCE是等腰三角形,又由△ACB中,∠ACB=90°,∠A=40°,即可求得∠E、∠CBE的度數,即可求得∠BCE的度數,繼而求得∠DCB的度數.
解答:∵將△ACB繞點C順時針旋轉得到△DCE,
∴△ACB≌△DCE,
∴∠E=∠ABC,BC=CE,
∴∠E=∠CBE,
∵△ACB中,∠ACB=90°,∠A=40°,
∴∠ABC=90°-∠A=50°,∠DCE=90°,
∴∠E=∠CBE=50°,
∴∠BCE=180°-∠E-∠CBE=80°,
∴∠DCB=∠DCE-∠BCE=90°-80°=10°.
故答案為:10°.
點評:此題考查了旋轉的性質、直角三角形的性質以及等腰三角形的性質.此題難度不大,注意掌握旋轉前后圖形的對應關系,注意數形結合思想的應用.