【題目】等腰三角形的一個外角是 140°,則此多邊形的三個內(nèi)角的度數(shù)分別是________
【答案】40°,70°,70°或40°,40°,100°.
【解析】
因為已知的外角沒有指明是哪個頂點對應的外角,故這個外角可以為頂角的外角,也可以為底角的外角,所以分140°為等腰三角形頂角的外角和140°為等腰三角形底角的外角兩種情況考慮,根據(jù)鄰補角定義分別求出外角的補角,然后根據(jù)等腰三角形的“等邊對等角”及三角形的內(nèi)角和定理即可求出其他角的度數(shù),得到正確答案.
當140°為等腰三角形頂角的外角時,畫出圖形,如圖所示:
根據(jù)圖形外角∠DAC=140°,
∴∠BAC=180°-140°=40°,
又AB=AC,∴∠B=∠C==70°,
則等腰三角形的三個內(nèi)角分別為:40°,70°,70°;
當140°為等腰三角形底角的外角時,畫出圖形,如圖所示:
根據(jù)圖形外角∠ADC=140°,∴∠ACB=180°-140°=40°,
又AB=AC,
∴∠B=∠ACB=40°,∠A=180°-40°-40°=100°,
則等腰三角形的三個內(nèi)角分別為:40°,40°,100°,
綜上,等腰三角形的內(nèi)角分別為:40°,70°,70°或40°,40°,100°.
故答案為:40°,70°,70°或40°,40°,100°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是矩形,M是BC邊上的一點,E是CD邊的中點,AE平分∠DAM.
(1)證明:AM=AD+MC.
(2)若四邊形ABCD是平行四邊形,其它條件不變,如圖,(1)中的結論是否成立?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD的頂點A在第一象限,AB∥x軸,AD∥y軸,且對角線的交點與原點O重合.在邊AB從小于AD到大于AD的變化過程中,若矩形ABCD的周長始終保持不變,則經(jīng)過動點A的反比例函數(shù)y=(k≠0)中k的值的變化情況是( )
A. 一直增大 B. 一直減小 C. 先增大后減小 D. 先減小后增大
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線經(jīng)過A(﹣4,0)、B(0,﹣4)、C(2,0)三點,若點M為第三象限內(nèi)拋物線上一動點,△AMB的面積為S,則S的最大值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A(1,a)是反比例函數(shù)的圖象上一點,直線與反比例函數(shù)的圖象的交點為點B、D,且B(3,﹣1),求:
(1)求反比例函數(shù)的解析式;
(2)求點D坐標,并直接寫出y1>y2時x的取值范圍;
(3)動點P(x,0)在x軸的正半軸上運動,當線段PA與線段PB之差達到最大時,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今年入夏以來,由于持續(xù)暴雨,某縣遭受嚴重洪澇災害,群眾頓失家園。該縣民政局為解決群眾困難, 緊急組織了一批救災帳篷和食品準備送到災區(qū)。已知這批物資中,帳篷和食品共 640 件,且?guī)づ癖仁?品多 160 件。
(1)帳篷和食品各有多少件?
(2)現(xiàn)計劃租用 A、B 兩種貨車共 16 輛,一次性將這批物資送到群眾手中,已知 A 種貨車可裝帳蓬40 件和食品 10 件,B 種貨車可裝帳篷 20 件和食品 20 件,試通過計算幫助民政局設計幾種運輸 方案?
(3)在(2)條件下,A 種貨 車每輛需付運費 800 元,B 種貨車每輛需付運費 720 元,民政局應選擇 哪種方案,才能使運輸費用最少?最少費用是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,△ABC中,AB=AC,點E是邊AC上一點,過點E作EF∥BC交AB于點F
(1)如圖①,求證:AE=AF;
(2)如圖②,將△AEF繞點A逆時針旋轉(zhuǎn)α(0°<α<144°)得到△AE′F′.連接CE′BF′.
①若BF′=6,求CE′的長;
②若∠EBC=∠BAC=36°,在圖②的旋轉(zhuǎn)過程中,當CE′∥AB時,直接寫出旋轉(zhuǎn)角α的大小.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,直線a 、b被直線c所截,現(xiàn)給出下列四種條件:
①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180° ④∠3=∠8,其中能判斷是a∥b的條件的序號是( )
A. ①② B. ①③ C. ①④ D. ③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com