【題目】已知⊙O1和⊙O2的半徑分別為m、n,且m、n滿足 +(n﹣2)2=0,圓心距O1O2= ,則兩圓的位置關系為

【答案】相交
【解析】解:∵⊙O1和⊙O2的半徑分別為m、n,且m、n滿足 +(n﹣2)2=0,
∴m﹣1=0,n﹣2=0,
解得:m=1,n=2,
∴m+n=3,
∵圓心距O1O2= ,
∴兩圓的位置關系為:相交.
所以答案是:相交.
【考點精析】認真審題,首先需要了解圓與圓的位置關系(兩圓之間有五種位置關系:無公共點的,一圓在另一圓之外叫外離,在之內叫內含;有唯一公共點的,一圓在另一圓之外叫外切,在之內叫內切;有兩個公共點的叫相交.兩圓圓心之間的距離叫做圓心距.兩圓的半徑分別為R和r,且R≥r,圓心距為P:外離P>R+r;外切P=R+r;相交R-r<P<R+r;內切P=R-r;內含P<R-r.).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,為了測出旗桿AB的高度,在旗桿前的平地上選擇一點C,測得旗桿頂部A的仰角為45°,在C、B之間選擇一點D(C、D、B三點共線),測得旗桿頂部A的仰角為75°,且CD=8m

(1)求點D到CA的距離;
(2)求旗桿AB的高.
(注:結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,延長AB至E,延長CD至F,BE=DF,連接EF,與BC、AD分別相交于P、Q兩點.

(1)求證:CP=AQ;
(2)若BP=1,PQ=2 ,∠AEF=45°,求矩形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,DE是過點A的直線,于點D,于點E,

BCDE的同側如圖求證:

BCDE的兩側如圖,其他條件不變,中的結論還成立嗎?不需證明

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明在學習二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如:3+2=(1+2,善于思考的小明進行了以下探索:
設a+b=(m+n2(其中a、b、m、n均為整數(shù)),則有a+b=m2+2n2+2mn,∴a=m2+2n2,b=2mn,這樣小明就找到了一種把部分a+b的式子化為平方式的方法。
請我仿照小明的方法探索并解決下列問題:
(1)當a、b、m、n均為正整數(shù)時,若a+b=(m+n2,用含m、n的式子分別表示a、b,得a=________, b=___________.

(2)若a+4=(m+n2,且a、m、n均為正整數(shù),求a的值。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我州某養(yǎng)殖場計劃購買甲、乙兩種魚苗600條,甲種魚苗每條16元,乙種魚苗每條20元,相關資料表明:甲、乙兩種魚苗的成活率為80%,90%
(1)若購買這兩種魚苗共用去11000元,則甲、乙兩種魚苗各購買多少條?
(2)若要使這批魚苗的總成活率不低于85%,則乙種魚苗至少購買多少條?
(3)在(2)的條件下,應如何選購魚苗,使購買魚苗的總費用最低?最低費用是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】
(1)計算:|﹣ |﹣2cos45°﹣( 1+(tan80°﹣ 0+
(2)化簡:( ﹣2)÷ ﹣2x,再代入一個合適的x求值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠BAC和∠ABC的平分線相交于點O,過點OEF∥ABBCF,交ACE,過點OOD⊥BCD,下列四個結論:

①∠AOB=90°+C;AE+BF=EF;③當∠C=90°時,E,F分別是AC,BC的中點;④若OD=a,CE+CF=2b,則SCEF=ab其中正確的是( 。

A. ①② B. ③④ C. ①②④ D. ①③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算: +|1﹣ |﹣2sin60°+(π﹣2016)0

查看答案和解析>>

同步練習冊答案