【題目】已知:如圖,在中,,,.點(diǎn)從點(diǎn)開(kāi)始沿邊向點(diǎn)以的速度移動(dòng),同時(shí)點(diǎn)從點(diǎn)開(kāi)始沿邊向點(diǎn)以的速度移動(dòng).當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí)另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒,
求幾秒后,的面積等于?
求幾秒后,的長(zhǎng)度等于?
運(yùn)動(dòng)過(guò)程中,的面積能否等于?說(shuō)明理由.
【答案】(1)或秒后的面積等于;(2)當(dāng)或時(shí),的長(zhǎng)度等于;(3)的面積不能等于.
【解析】
(1)設(shè)經(jīng)過(guò)x秒鐘,△PBQ的面積等于6平方厘米,根據(jù)點(diǎn)P從A點(diǎn)開(kāi)始沿AB邊向點(diǎn)B以1cm/s的速度移動(dòng),點(diǎn)Q從B點(diǎn)開(kāi)始沿BC邊向點(diǎn)C以2cm/s的速度移動(dòng),表示出BP和BQ的長(zhǎng)可列方程求解.
(2)根據(jù)PQ=5,利用勾股定理BP2+BQ2=PQ2,求出即可;
(3)通過(guò)判定得到的方程的根的判別式即可判定能否達(dá)到8cm2.
(1)設(shè)經(jīng)過(guò)x秒以后△PBQ面積為6
×(5x)×2x=6
整理得:x25x+6=0
解得:x=2或x=3
答:2或3秒后△PBQ的面積等于6cm2.
當(dāng)時(shí),在中,∵,
∴,
,
,
,,
∴當(dāng)或時(shí),的長(zhǎng)度等于.
設(shè)經(jīng)過(guò)秒以后面積為,
整理得:
∴的面積不能等于.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC是等邊三角形,點(diǎn)D,E分別為邊AB,AC上的點(diǎn),且有AE=DB,連接DE,DC.
(1)如圖1,若AB=6,∠DEC=90°,求△DEC的面積.
(2)M為DE中點(diǎn),當(dāng)D,E分別為AB、AC的中點(diǎn)時(shí),判定CD,AM的數(shù)量關(guān)系并說(shuō)明理由.
(3)如圖2,M為DE中點(diǎn),當(dāng)D,E分別為AB,AC上的動(dòng)點(diǎn)時(shí),判定CD,AM的數(shù)量關(guān)系并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一元二次方程2x2+2x﹣1=0的兩個(gè)根為x1,x2,且x1<x2,下列結(jié)論正確的是( 。
A. x1+x2=1 B. x1x2=﹣1 C. |x1|<|x2| D. x12+x1=
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,∠ACB=90°,AC=BC=2,將直角邊AC繞A點(diǎn)逆時(shí)針旋轉(zhuǎn)至AC′,連接BC′,E為BC′的中點(diǎn),連接CE,則CE的最大值為( ).
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小華剪了兩條寬為1的紙條,交叉疊放在一起,且它們較小的交角為60°,則它們重疊部分的面積為( 。
A. 3 B. 2 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題探究:已知平行四邊形的面積為,是所在直線(xiàn)上一點(diǎn).
如圖:當(dāng)點(diǎn)與重合時(shí),________;
如圖,當(dāng)點(diǎn)與與均不重合時(shí),________;
如圖,當(dāng)點(diǎn)在(或)的延長(zhǎng)線(xiàn)時(shí),________.
拓展推廣:如圖,平行四邊形的面積為,、分別為、延長(zhǎng)線(xiàn)上兩點(diǎn),連接、、、,求出圖中陰影部分的面積,并說(shuō)明理由.
實(shí)踐應(yīng)用:如圖是一平行四邊形綠地,、分別平行于、,它們相交于點(diǎn),,,,,現(xiàn)進(jìn)行綠地改造,在綠地內(nèi)部作一個(gè)三角形區(qū)域(連接、、,圖中陰影部分)種植不同的花草,求出三角形區(qū)域的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,BD是AC邊上的中線(xiàn),AE⊥BC,垂足為點(diǎn)E,交BD于F,cos∠ABC=,AB=13.
(1)求AE的長(zhǎng);
(2)求tan∠DBC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,過(guò)點(diǎn)A作AE⊥BC,垂足為E,連接DE,F為線(xiàn)段DE上一點(diǎn),且∠AFE=∠B
(1)求證:△ADF∽△DEC;
(2)若AB=8,AD=6,AF=4,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P是等邊三角形ABC內(nèi)的一點(diǎn),且PA=3,PB=4,PC=5,將△ABP繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°到△CBQ位置.連接PQ,則以下結(jié)論錯(cuò)誤的是( )
A. ∠QPB=60° B. ∠PQC=90° C. ∠APB=150° D. ∠APC=135°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com