【題目】如圖,在矩形ABCD中,AB=6cm,AD=8cm,連接BD,將△ABD繞B點(diǎn)作順時(shí)針方向旋轉(zhuǎn)得到△A′B′D′(B′與B重合),且點(diǎn)D′剛好落在BC的延長上,A′D′與CD相交于點(diǎn)E.
(1)求矩形ABCD與△A′B′D′重疊部分(如圖中陰影部分A′B′CE)的面積;
(2)將△A′B′D′以2cm/s的速度沿直線BC向右平移,當(dāng)B′移動到C點(diǎn)時(shí)停止移動.設(shè)矩形ABCD與△A′B′D′重疊部分的面積為ycm2,移動的時(shí)間為x秒,請你求出y關(guān)于x的函數(shù)關(guān)系式,并指出自變量x的取值范圍.
【答案】(1);(2)當(dāng)0≤x<時(shí),y=﹣x2﹣x+24,當(dāng)≤x≤4時(shí),y=x2-x+
【解析】
(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可知B′D′=BD=10,CD′=B′D′﹣BC=2,由tan∠B′D′A′=,可求出CE,即可計(jì)算△CED′的面積,SA′B′CE=SA′B′D′﹣SCED′;
(2)分類討論,當(dāng)0≤x≤時(shí)和當(dāng) <x≤4時(shí),分別列出函數(shù)表達(dá)式;
解:(1)∵AB=6cm,AD=8cm,
∴BD=10cm,
根據(jù)旋轉(zhuǎn)的性質(zhì)可知B′D′=BD=10cm,CD′=B′D′﹣BC=2cm,
∵tan∠B′D′A=,
∴,
∴CE=cm,
∴S A′B′CE=SA′B′D′﹣SCED′=﹣2×÷2=(cm2);
(2)①當(dāng)0≤x<時(shí),CD′=2x+2,CE=x,
∴S△CD′E=x2+x,
∴y=×6×8﹣x2﹣x=﹣x2﹣x+24;
②當(dāng)≤x≤4時(shí),B′C=10﹣2x,CE=(10﹣2x)
∴y=×(10﹣2x)2=x2-x+.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,點(diǎn)P是一個(gè)反比例函數(shù)的圖象與正比例函數(shù)y=﹣2x的圖象的公共點(diǎn),PQ垂直于x軸,垂足Q的坐標(biāo)為(2,0).
(1)求這個(gè)反比例函數(shù)的解析式;
(2)如果點(diǎn)M在這個(gè)反比例函數(shù)的圖象上,且△MPQ的面積為6,求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)【問題發(fā)現(xiàn)】
如圖1,在Rt△ABC中,AB=AC=2,∠BAC=90°,點(diǎn)D為BC的中點(diǎn),以CD為一邊作正方形CDEF,點(diǎn)E恰好與點(diǎn)A重合,則線段BE與AF的數(shù)量關(guān)系為
(2)【拓展研究】
在(1)的條件下,如果正方形CDEF繞點(diǎn)C旋轉(zhuǎn),連接BE,CE,AF,線段BE與AF的數(shù)量關(guān)系有無變化?請僅就圖2的情形給出證明;
(3)【問題發(fā)現(xiàn)】
當(dāng)正方形CDEF旋轉(zhuǎn)到B,E,F(xiàn)三點(diǎn)共線時(shí)候,直接寫出線段AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)全等形的定義,我們把四個(gè)角分別相等,四條邊分別相等的兩個(gè)凸四邊形叫做全等四邊形.
(1)某同學(xué)在探究全等四邊形的判定時(shí),得到如下三個(gè)命題,請判斷它們是否正確(直接在橫線上填寫“真”或“假”).
①四條邊成比例的兩個(gè)凸四邊形全等;( 命題)
②四個(gè)角分別相等的兩個(gè)凸四邊形全等;( 命題)
③兩個(gè)面積相等的正方形全等;( 命題)
④三角分別相等,且其中兩角夾邊相等兩個(gè)凸四邊形全等.( 命題)
(2)如圖,在四邊形ABCD和四邊形A1B1C1D1中,∠ABC=∠A1B1C1,∠BCD=∠B1C1D1,AB=A1B1,BC=∠B1C1,CD=C1D1.求證:在四邊形ABCD和四邊形A1B1C1D1全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)活動課上老師帶領(lǐng)全班學(xué)生測量旗桿高度.如圖垂直于地面的旗桿頂端A垂下一根繩子.小明同學(xué)將繩子拉直釘在地上,繩子末端恰好在點(diǎn)C處且測得旗桿頂端A的仰角為75°;小亮同學(xué)接著拿起繩子末端向前至D處,拉直繩子,此時(shí)測得繩子末端E距離地面1.5 m且與旗桿頂端A的仰角為60°根據(jù)兩位同學(xué)的測量數(shù)據(jù),求旗桿AB的高度.(參考數(shù)據(jù):sin75°≈0.97,cos75°≈0.26,sin60°≈0.87,結(jié)果精確到1米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)店銷售某款童裝,每件售價(jià)60元,每星期可賣300件,為了促銷,該網(wǎng)店決定降價(jià)銷售.市場調(diào)查反映:每降價(jià)1元,每星期可多賣30件.已知該款童裝每件成本價(jià)40元,設(shè)該款童裝每件售價(jià)x元,每星期的銷售量為y件.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)當(dāng)每件售價(jià)定為多少元時(shí),每星期的銷售利潤最大,最大利潤多少元?
(3)若該網(wǎng)店每星期想要獲得不低于6480元的利潤,每星期至少要銷售該款童裝多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x﹣2(k≠0)與y軸交于點(diǎn)A,與雙曲線y=在第一象限內(nèi)交于點(diǎn)B(3,b),在第三象限內(nèi)交于點(diǎn)C.
(1)求雙曲線的解析式;
(2)直接寫出不等式x﹣2>的解集;
(3)若OD∥AB,在第一象限交雙曲線于點(diǎn)D,連接AD,求S△AOD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=﹣x+b的圖象與反比例函數(shù)y=(k≠0)圖象交于A、B兩點(diǎn),與y軸交于點(diǎn)C,與x軸交于點(diǎn)D,其中A點(diǎn)坐標(biāo)為(﹣2,3).
(1)求一次函數(shù)和反比例函數(shù)解析式.
(2)若將點(diǎn)C沿y軸向下平移4個(gè)單位長度至點(diǎn)F,連接AF、BF,求△ABF的面積.
(3)根據(jù)圖象,直接寫出不等式﹣x+b>的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A(0,2)、B(a,a+2)、C(b,0)(a>0,b>0),若AB=且∠ACB最大時(shí),b的值為( 。
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com