【題目】已知,為內(nèi)部的一條射線,.
(1)如圖1,若平分,為內(nèi)部的一條射線,,求的度數(shù);
(2)如圖2,若射線繞著點(diǎn)從開始以每秒的速度順時(shí)針旋轉(zhuǎn)至結(jié)束、繞著點(diǎn)從開始以每秒的速度逆時(shí)針旋轉(zhuǎn)至結(jié)束,當(dāng)一條射線到達(dá)終點(diǎn)時(shí)另一條射線也停止運(yùn)動(dòng).若運(yùn)動(dòng)時(shí)間為秒,當(dāng)時(shí),求的值;
(3)若射線繞著點(diǎn)從開始以每秒的速度逆時(shí)針旋轉(zhuǎn)至結(jié)束,在旋轉(zhuǎn)過程中,平分,試問在某時(shí)間段內(nèi)是否為定值;若不是,請說明理由;若是,請補(bǔ)全圖形,并直接寫出這個(gè)定值以及相應(yīng)所在的時(shí)間段.(本題中的角均為大于且小于的角)
【答案】(1);(2)t的值為3或7.5;(3)當(dāng)或時(shí),為定值,此時(shí)補(bǔ)全的圖形見解析.
【解析】
(1)先根據(jù)角平分線的定義求出的度數(shù),再根據(jù)角的倍差求出的度數(shù),最后根據(jù)角的和差即可;
(2)先求出的度數(shù)和t的最大值,從而可知停止運(yùn)動(dòng)時(shí),OF在OC的右側(cè),因此,分OE在OC左側(cè)和右側(cè)兩種情況,再根據(jù)列出等式求解即可;
(3)因本題中的角均為大于且小于的角,則需分OM與OB在一條直線上、ON與OB在一條直線上、OM與OA在一條直線上三個(gè)臨界位置,從而求出此時(shí)t的取值范圍,并求出各范圍內(nèi)和的度數(shù),即可得出答案.
(1)平分,
;
(2)
由題意知,當(dāng)OE轉(zhuǎn)到OB時(shí),兩條射線均停止運(yùn)動(dòng)
此時(shí)(秒)
則OF停止轉(zhuǎn)動(dòng)時(shí),
即OF從開始旋轉(zhuǎn)至停止運(yùn)動(dòng),始終在OC的右側(cè)
因此,分以下2種情況:
①當(dāng)OE在OC左側(cè)時(shí),
則由得,解得
②當(dāng)OE在OC右側(cè)時(shí),
則由得,解得
綜上,t的值為3或7.5;
(3)射線OM從開始轉(zhuǎn)動(dòng)至OB結(jié)束時(shí),轉(zhuǎn)動(dòng)時(shí)間為(秒)
由題意,分OM與OB在一條直線上()、ON與OB在一條直線上()、OM與OA在一條直線上()三個(gè)臨界位置
①當(dāng)時(shí),如圖1所示
此時(shí),
則為定值
②當(dāng)時(shí),如圖2所示
此時(shí),
則不為定值
③當(dāng)時(shí),如圖3所示
此時(shí),
則為定值
④當(dāng)時(shí),如圖4所示
此時(shí),
則不為定值
綜上,當(dāng)或時(shí),為定值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線x=﹣4與x軸交于點(diǎn)E,一開口向上的拋物線過原點(diǎn)交線段OE于點(diǎn)A,交直線x=﹣4于點(diǎn)B,過B且平行于x軸的直線與拋物線交于點(diǎn)C,直線OC交直線AB于D,且AD:BD=1:3.
(1)求點(diǎn)A的坐標(biāo);
(2)若△OBC是等腰三角形,求此拋物線的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,∠AOB . 求作:∠A′O′B′,使∠A′O′B′=∠AOB . 作法:
①以________為圓心,________為半徑畫。謩e交OA , OB于點(diǎn)C , D .
②畫一條射線O′A′,以________為圓心,________長為半徑畫弧,交O′A′于點(diǎn)C′,
③以點(diǎn)________為圓心________長為半徑畫弧,與第2步中所畫的弧交于點(diǎn)D′.
④過點(diǎn)________畫射線O′B′,則∠A′O′B′=∠AOB .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校組織了一批學(xué)生隨機(jī)對部分市民就是否吸煙以及吸煙和非吸煙人群對他人在公共場所吸煙的態(tài)度(分三類:A表示主動(dòng)制止;B表示反感但不制止,C表示無所謂)進(jìn)行了問卷調(diào)查,根據(jù)調(diào)查結(jié)果分別繪制了如下兩個(gè)統(tǒng)計(jì)圖. 請根據(jù)圖中提供的信息解答下列問題:
(1)圖1中,“吸煙”類人數(shù)所占扇形的圓心角的度數(shù)是多少?
(2)這次被調(diào)查的市民有多少人?
(3)補(bǔ)全條形統(tǒng)計(jì)圖;
(4)若該市共有市民480萬人,求該市大約有多少人吸煙?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,半徑為1的小圓與半徑為2的大圓上有一點(diǎn)與數(shù)軸上原點(diǎn)重合,兩圓在數(shù)軸上做無滑動(dòng)的滾動(dòng),小圓的運(yùn)動(dòng)速度為每秒π個(gè)單位,大圓的運(yùn)動(dòng)速度為每秒2π個(gè)單位.
(1)若大圓沿?cái)?shù)軸向左滾動(dòng)1周,則該圓與數(shù)軸重合的點(diǎn)所表示的數(shù)是 ;
(2)若小圓不動(dòng),大圓沿?cái)?shù)軸來回滾動(dòng),規(guī)定大圓向右滾動(dòng)時(shí)間記為正數(shù),向左滾動(dòng)時(shí)間記為負(fù)數(shù),依次滾動(dòng)的情況記錄如下(單位:秒):﹣1,+2,﹣4,﹣2,+3,﹣8
①第幾次滾動(dòng)后,大圓離原點(diǎn)最遠(yuǎn)?
②當(dāng)大圓結(jié)束運(yùn)動(dòng)時(shí),大圓運(yùn)動(dòng)的路程共有多少?此時(shí)兩圓與數(shù)軸重合的點(diǎn)之間的距離是多少?(結(jié)果保留π)
(3)若兩圓同時(shí)在數(shù)軸上各自沿著某一方向連續(xù)滾動(dòng),滾動(dòng)一段時(shí)間后兩圓與數(shù)軸重合的點(diǎn)之間相距9π,求此時(shí)兩圓與數(shù)軸重合的點(diǎn)所表示的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某包子鋪每天供應(yīng)黑豬鮮肉包、香菇青菜包、桂花豆沙包和其他特色包子.某一天,該包子鋪共賣出包子6000個(gè),且各類包子的銷售情況如圖所示,則下列說法正確的是( )
A.當(dāng)天共賣出黑豬鮮肉包2000個(gè)B.當(dāng)天香菇青菜包的銷量是桂花豆沙包的3倍
C.當(dāng)天其他特色包子在統(tǒng)計(jì)圖中所對應(yīng)的圓心角是D.據(jù)此可以得出最受市民歡迎的包子是黑豬鮮肉包
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列圖形的變化過程,解答以下問題:
如圖,在△ABC中,D為BC邊上的一動(dòng)點(diǎn)(D點(diǎn)不與B、C兩點(diǎn)重合).DE∥AC交AB于E點(diǎn),DF∥AB交AC于F點(diǎn).
(小題1)試探索AD滿足什么條件時(shí),四邊形AEDF為菱形,并說明理由;
(小題2)在(1)的條件下,△ABC滿足什么條件時(shí),四邊形AEDF為正方形?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC,直線PQ垂直平分AC,與邊AB交于E,連接CE,過點(diǎn)C作CF平行于BA交PQ于點(diǎn)F,連接AF.
(1)求證:△AED≌△CFD;
(2)求證:四邊形AECF是菱形.
(3)若AD=3,AE=5,則菱形AECF的面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形紙片ABCD中,AD=5,AB=3.若M為射線AD上的一個(gè)動(dòng)點(diǎn),將△ABM沿BM折疊得到△NBM.若△NBC是直角三角形.則所有符合條件的M點(diǎn)所對應(yīng)的AM長度的和為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com