【題目】在數(shù)學中,有許多關系都是在不經(jīng)意間被發(fā)現(xiàn)的.當然,沒有敏銳的觀察力是做不到的.數(shù)學家們往往是這樣來研究問題的:特值探究猜想歸納邏輯證明總結應用.下面我們也來像數(shù)學家們那樣分四步找出這兩個代數(shù)式的關系:對于代數(shù)式

特值探究

時,________;________

,時,________;________

猜想歸納:

觀察的結果,寫出的關系:________.

邏輯證明:如圖,邊長為的正方形紙片剪出一個邊長為的小正方形之后,剩余部分(即陰影部分)又剪拼成一個矩形(不重疊無縫隙),請你說說是如何用這個圖來得出中的關系?

總結應用:利用你發(fā)現(xiàn)的關系,求:

①若,且,則________;

的值.(提示:你可能要用到公式

【答案】4;4;16;16;

;

詳見解析;

3;.

【解析】

的值代入兩式計算即可得到結果;

歸納總結得出關系即可;

根據(jù)陰影部分面積不變,驗證即可

①利用平方差公式計算即可得到結果;

②原式變形后,利用平方差公式計算即可得到結果.

特值探究:

,時, ,

,時, , ;

猜想歸納:

觀察的結果寫出的關系: ;

邏輯證明:

如圖,邊長為的正方形紙片剪去一個邊長為的小正方形之后,剩余部分(即陰影部分)又剪拼成一個矩形(不重疊無縫隙),

左圖中陰影部分面積為,右圖陰影部分面積為,

總結應用:利用你發(fā)現(xiàn)的關系,求:

,且,則

原式

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正三角形和正方形的面積分別為10,6,兩陰影部分的面積分別為a,b(a>b),則(a﹣b)等于

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】自開展“學生每天鍛煉1小時”活動后,我市某中學根據(jù)學校實際情況,決定開設A:毽子,B:籃球,C:跑步,D:跳繩四種運動項目.為了了解學生最喜歡哪一種項目,隨機抽取了部分學生進行調(diào)查,并將調(diào)查結果繪制成如圖統(tǒng)計圖.請結合圖中信息解答下列問題:

(1)該校本次調(diào)查中,共調(diào)查了多少名學生?
(2)請將兩個統(tǒng)計圖補充完整;
(3)在本次調(diào)查的學生中隨機抽取1人,他喜歡“跑步”的概率有多大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD的面積是16,對角線AC、BD相交于點O,點M1、N1、P1分別為線段OD、DC、CO的中點,順次連接M1N1、N1 P1、P1M1得到第一個△P1M1N1 , 面積為S1 , 分別取M1N1、N1P1、P1M1三邊的中點P2、M2、N2 , 得到第二個△P2M2N2 , 面積記為S2 , 如此繼續(xù)下去得到第n個△PnMnNn , 面積記為Sn , 則Sn﹣Sn1= . (用含n的代數(shù)式表示,n≥2,n為整數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某農(nóng)戶承包果樹若干畝,今年投資元,收獲水果總產(chǎn)量為千克.此水果在市場上每千克售元,在果園直接銷售每千克售.該農(nóng)戶將水果拉到市場出售平均每天出售千克,需人幫忙,每人每天付工資元,農(nóng)用車運費及其他各項稅費平均每天元.

分別用含,的代數(shù)式表示兩種方式出售水果的收入.

元,元,且兩種出售水果方式都在相同的時間內(nèi)售完全部水果,請你通過計算說明選擇哪種出售方式較好.

該農(nóng)戶加強果園管理,力爭到明年純收入達到元,而且該農(nóng)戶采用了中較好的出售方式出售,那么純收入增長率是多少(純收入總收入-總支出)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小梅將邊長分別為,,,長的若干個正方形按一定規(guī)律拼成不同的長方形,如圖所示.

求第四個長方形的周長;

時,求第五個長方形的面積.(用科學記數(shù)法表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:直線與雙曲線交于A.B兩點,且點A的橫坐標為4, 若雙曲線上一點C的縱坐標為8,連接AC.

(1)填空: k的值為_______; B的坐標為___________;C的坐標為___________.

(2)直接寫出關于的不等式的解集.

(3)求三角形AOC的面積

(4) 若在x軸上有點My軸上有點N,且點M.N.A.C四點恰好構成平行四邊形,直接寫出點M.N的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:△ABC在坐標平面內(nèi),三個頂點的坐標分別為A(0,3),B(3,4),C(2,2).(正方形網(wǎng)格中,每個小正方形的邊長是1個單位長度)

(1)畫出△ABC向下平移4個單位得到的△A1B1C1 , 并直接寫出C1點的坐標;
(2)以點B為位似中心,在網(wǎng)格中畫出△A2BC2 , 使△A2BC2與△ABC位似,且位似比為2:1,并直接寫出C2點的坐標及△A2BC2的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點C在⊙O上,∠CAB的平分線交⊙O于點D,過點D作AC的垂線交AC的延長線于點E,連接BC交AD于點F.

(1)猜想ED與⊙O的位置關系,并證明你的猜想;
(2)若AB=6,AD=5,求AF的長.

查看答案和解析>>

同步練習冊答案