【題目】已知一次函數(shù)y=k1x+b與反比例函數(shù)y=的圖象交于第一象限內(nèi)P,8),Q4,m)兩點.

1)分別求出這兩個函數(shù)的表達(dá)式;

2)請直接寫出不等式k1x+b的解集.

【答案】1)反比例函數(shù)的表達(dá)式為y= ,一次函數(shù)的表達(dá)式為y=2x+9;(20x x4

【解析】試題分析:1)首先把代入反比例函數(shù)解析式中確定,然后把代入反比例函數(shù)的解析式確定,然后根據(jù)兩點坐標(biāo)利用待定系數(shù)法確定一次函數(shù)的解析式;
2)根據(jù)函數(shù)的圖象即可求得;

試題解析:(1)∵點P在反比例函數(shù)的圖象上,

∴把點代入可得:

∴反比例函數(shù)的表達(dá)式為

∵點在反比例函數(shù)的圖象上,

, 分別代入中,

解得

∴一次函數(shù)的表達(dá)式為

即:反比例函數(shù)的表達(dá)式為一次函數(shù)的表達(dá)式為

2)由圖象知,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB30°,點M、N分別在邊OA、OB上,且OM2,ON6,點P、Q 分別在邊OB、OA上,則MP+PQ+QN的最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,點ECD邊上一點,,連接AE、BEBD,且AEBD交于點F.若,則(  )

A.15.5B.16.5C.17.5D.18.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究

問題情境:

(1)如圖1,兩塊等腰直角三角板△ABC和△ECD如圖所示擺放,其中∠ACB=∠DCE=90°,點F,H,G分別是線段DE,AE,BD的中點,A,C,D和B,C,E分別共線,則FH和FG的數(shù)量關(guān)系是   ,位置關(guān)系是   

合作探究:

(2)如圖2,若將圖1中的△DEC繞著點C順時針旋轉(zhuǎn)至A,C,E在一條直線上,其余條件不變,那么(1)中的結(jié)論還成立嗎?若成立,請證明,若不成立,請說明理由.

(3)如圖3,若將圖1中的△DEC繞著點C順時針旋轉(zhuǎn)一個銳角,那么(1)中的結(jié)論是否還成立?若成立,請證明,若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠C90°,AB5,BC4,點G為邊BC的中點,點D從點C出發(fā)沿CA向點A運動,到點A停止,以GD為邊作正方形DEFG,則點E運動的路程為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】、兩地相距,甲、乙兩車分別沿同一條路線從地出發(fā)駛往地,已知甲車的速度為,乙車的速度為,甲車先出發(fā)后乙車再出發(fā),乙車到達(dá)地后再原地等甲車.

(1)求乙車出發(fā)多長時間追上甲車?

(2)求乙車出發(fā)多長時間與甲車相距?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算: 

(1)(-6)-(+5)+(-7)-(-4)

(2) (-8)(-4)

(3)

(4)

(5)

(6)()

(7)x+(5x+3y)-(3x-2y)

(8)(5a2+2a-1)-4(3-2a+a2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,∠A=30°,經(jīng)過B,C兩點的⊙O交邊AB于另一點E,延長CO交邊AB于點D,EF∥CD⊙O于另一點F, 連接CF。

(1)若⊙O的半徑為4,求弧CE的長;

(2)求證:四邊形EFCO是菱形;

(3)BC=6,tan∠CDB=3,求BD的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛汽車在公路上行駛,看到里程表上是一個兩位數(shù),1小時后其里程表還是一個兩位數(shù),且剛好它的十位數(shù)字與個位數(shù)字與第一次看到的兩位數(shù)的十位數(shù)字與個位數(shù)字顛倒了位置,又過了1小時后看到里程表是一個三位數(shù),它是第一次看到的兩位數(shù)中間加一個0,則汽車的速度是( )千米/小時.

A. 35B. 40C. 45D. 50

查看答案和解析>>

同步練習(xí)冊答案