精英家教網 > 初中數學 > 題目詳情
如圖,C為雙曲線y=
k
x
(x>0)上一點,線段AE與y軸交于點E,且AE=EC,將線段AC平移至BD處,點D恰好也在雙曲線y=
k
x
(x>0)上,若A(-1,0),B(0,-2).則k=
4
4
分析:首先根據已知得出△NCE≌△OAE,進而得出C點橫坐標,進而利用平移的性質得出C,D兩點坐標,即可得出k的值.
解答:解:過點C作CN⊥y軸于點N,CM⊥x軸于點M,DQ⊥y軸于點Q,DF⊥x軸于點F,
在△NCE與△OAE中,
EC=AE
∠CNE=∠AOE
∠NEC=∠OEA
,
∴△NCE≌△OAE,
∴AO=NC=1,
則設C點坐標為:(1,y),
∵A(-1,0),B(0,-2),又因為線段AC平移至BD處,
∴D點坐標為:(2,y-2),
∵C,D都在反比例函數圖象上,
∴1×y=k,2(y-2)=k,
∴y=2(y-2),
解得:y=4,
∴C點坐標為:(1,4),
∴k=1×4=4.
故答案為:4.
點評:此題主要考查了平移的性質以及反比函數的性質,根據已知得出C,D兩點坐標是解題關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2012•蘭州)如圖,M為雙曲線y=
3
x
上的一點,過點M作x軸、y軸的垂線,分別交直線y=-x+m于點D、C兩點,若直線y=-x+m與y軸交于點A,與x軸相交于點B,則AD•BC的值為
2
3
2
3

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•歷城區(qū)二模)如圖,M為雙曲線y=
2x
上的一點,過點M作x軸、y軸的垂線,分別交直線y=-x+m于D、C兩點,若直線y=-x+m與y軸交于點A,與x軸交于點B,則AD•BC的值為
4
4

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,A為雙曲線y=
6
x
上一點,AD⊥y軸于點D,將直線AD向下平移交雙曲線于C,交y軸于E,延長AC交x軸于點B,
AC
BC
=2,則
OB-AD
CE
=
1
1

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•天門模擬)如圖,B為雙曲線y=
1x
(x>0)上一點,直線AB平行于y軸交直線y=x于點A,求(OB+AB)(OB-AB)的值.

查看答案和解析>>

同步練習冊答案