【題目】如圖,AB⊙O的直徑,PD⊙O于點(diǎn)C,交AB的延長線于點(diǎn)D,且∠D=2∠CAD

1)求∠D的度數(shù);

2)若CD=2,求BD的長.

【答案】145°;(2

【解析】試題(1)根據(jù)等腰三角形性質(zhì)和三角形外角性質(zhì)求出∠COD=2∠A,求出∠D=∠COD,根據(jù)切線性質(zhì)求出∠OCD=90°,即可求出答案;

2)求出OC=CD=2,根據(jù)勾股定理求出BD即可.

試題解析:(1∵OA=OC,

∴∠A=∠ACO

∴∠COD=∠A+∠ACO=2∠A,

∵∠D=2∠A,

∴∠D=∠COD

∵PD⊙OC,

∴∠OCD=90°,

∴∠D=∠COD=45°

2∵∠D=∠COD,CD=2,

∴OC=OB=CD=2,

Rt△OCD中,由勾股定理得:22+22=2+BD2,

解得:BD=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以點(diǎn)P(-1,0)為圓心的圓,交x軸于B、C兩點(diǎn)(BC的左側(cè)),交y軸于A、D兩點(diǎn)(AD的下方),AD=,將ABC繞點(diǎn)P旋轉(zhuǎn)180°,得到MCB.

(1)求B、C兩點(diǎn)的坐標(biāo);

(2)請(qǐng)?jiān)趫D中畫出線段MB、MC,并判斷四邊形ACMB的形狀(不必證明),求出點(diǎn)M的坐標(biāo);

(3)動(dòng)直線l從與BM重合的位置開始繞點(diǎn)B順時(shí)針旋轉(zhuǎn),到與BC重合時(shí)停止,設(shè)直線lCM交點(diǎn)為E,點(diǎn)QBE的中點(diǎn),過點(diǎn)EEGBCG,連接MQ、QG.請(qǐng)問在旋轉(zhuǎn)過程中∠MQG的大小是否變化?若不變,求出∠MQG的度數(shù);若變化,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,AD△ABC的角平分線,點(diǎn)OAB的中點(diǎn),連接DO并延長到點(diǎn)E,使OE=OD,連接AE,BE

1)求證:四邊形AEBD是矩形;

2)當(dāng)△ABC滿足什么條件時(shí),矩形AEBD是正方形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABBD,ACCE,DC、BE交于點(diǎn)F,∠ABD=∠ACE60°.

1)求證:BECD;

2)求∠A+∠ABF+∠ACF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:

如圖,把沿直線平行移動(dòng)線段的長度,可以變到的位置;

如圖,以為軸,把翻折,可以變到的位置;

如圖,以點(diǎn)為中心,把旋轉(zhuǎn),可以變到的位置.

像這樣,其中一個(gè)三角形是由另一個(gè)三角形按平行移動(dòng)、翻折、旋轉(zhuǎn)等方法變成的.這種只改變位置,不改變形狀大小的圖形變換,叫做三角形的全等變換.

回答下列問題:

在圖中,可以通過平行移動(dòng)、翻折、旋轉(zhuǎn)中的哪一種方法怎樣變化,使變到的位置;

指圖中線段之間的關(guān)系,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有、、三個(gè)居民小區(qū)的位置成三角形,現(xiàn)決定在三個(gè)小區(qū)之間修建一個(gè)購物超市,使超市到三個(gè)小區(qū)的距離相等,則超市應(yīng)建在(

A.在∠A、∠B兩內(nèi)角平分線的交點(diǎn)處

B.AC、BC兩邊垂直平分線的交點(diǎn)處

C.ACBC兩邊高線的交點(diǎn)處

D.AC、BC兩邊中線的交點(diǎn)處

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校計(jì)劃組織師生共300人參加一次大型公益活動(dòng),如果租用6輛大客車和5輛小客車,恰好全部坐滿,已知每輛大客車的乘客座位數(shù)比小客車多17個(gè).

(1)求每輛大客車和每輛小客車的乘客座位數(shù);

(2)由于最后參加活動(dòng)的人數(shù)增加了30人,學(xué)校決定調(diào)整租車方案,在保持租用車輛總數(shù)不變的情況下,且所有參加活動(dòng)的師生都有座位,求租用小客車數(shù)量的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+(2k-1)x+k2+1=0,如果方程的兩根之和等于兩根之積,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電子廠商投產(chǎn)一種新型電子產(chǎn)品,每件制造成本為元,試銷過程中發(fā)現(xiàn),每月銷售量(萬件)與銷售單價(jià)(元)之間的關(guān)系可以近似地看作一次函數(shù).(利潤售價(jià)-制造成本)

寫出每月的利潤(萬元)與銷售單價(jià)(元)之間的函數(shù)關(guān)系式;

當(dāng)銷售單價(jià)為多少元時(shí),廠商每月獲得的利潤為萬元?

如果廠商每月的制造成本不超過萬元,那么當(dāng)銷售單價(jià)為多少元時(shí),廠商每月獲得的利潤最大?最大利潤為多少萬元?

查看答案和解析>>

同步練習(xí)冊(cè)答案