如圖(1),直線與x軸交于點A、與y軸交于點D,以AD為腰,以x軸為底作等腰梯形ABCD(AB>CD),且等腰梯形的面積是8,拋物線經(jīng)過等腰梯形的四個頂點.

圖(1)
(1) 求拋物線的解析式;
(2) 如圖(2)若點P為BC上的—個動點(與B、C不重合),以P為圓心,BP長為半徑作圓,與軸的另一個交點為E,作EF⊥AD,垂足為F,請判斷EF與⊙P的位置關系,并給以證明;

圖(2)
(3) 在(2)的條件下,是否存在點P,使⊙P與y軸相切,如果存在,請求出點P的坐標;如果不存在,請說明理由.
(1);(2)EF與⊙P相切.,證明見解析;(3) 存在, x=,P(,).

試題分析:(1)過C作CE⊥AB于E,利用矩形的性質分別求得三點的坐標,利用求得的點的坐標,用待定系數(shù)法求得二次函數(shù)的解析式即可;
(2)連結PE,可以得到:PE∥DA,從而得出EF與⊙P相切;
(3)設⊙P與y軸相切于點G,P作PQ⊥x軸于點Q,設Q(x,0),用含有x的代數(shù)式分別表示出PG和PB,再根據(jù)PG=PB求出x的值即可.
試題解析:(1) ∵,當x=0時, y=;當y=0時,x=-2,
∴A(-2,0),D,
∵ABCD為等腰梯形,
∴AD=BC,∠OAD=∠OBC
過點C作CH⊥AB于點H,則AO=BH,OH=DC.

∵ABCD的面積是,
∴8=,
∴DC=2,
∴C(2, ),B(4,0),
設拋物線解析式為),代入A(-2,0),D,B(4,0)
,
解得
;
(2)連結PE,∵PE=PB,

∴∠PBE=∠PEB,
∵∠PBE=∠DAB,
∴∠DAB=∠PBE,
∴PE∥DA,
∵EF⊥AD,
∴∠FEP=∠AFF=90°,
又PE為半徑,EF與⊙P相切.;
(3)設⊙P與y軸相切于點G,P作PQ⊥x軸于點Q,
設Q(x,0),則QB=4-x,

∵∠PBA=∠DAO,,
∴∠PBA=∠DAO=60°,
∴PQ=, PB="8-2x" ,P(x, ),
∵⊙P與y軸相切于點G,⊙P過點B,
∴PG=PB,
∴x=8-2x,
∴x=,P(,).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,點A坐標為(-2,0),點B坐標為(0,2),點E為線段AB上的動點(點E不與點A,B重合),以E為頂點作∠OET=45°,射線ET交線段OB于點F,C為y軸正半軸上一點,且OC=AB,拋物線y=x2+mx+n的圖象經(jīng)過A,C兩點.

(1)求此拋物線的函數(shù)表達式;
(2)求證:∠BEF=∠AOE;
(3)當△EOF為等腰三角形時,求此時點E的坐標;
(4)在(3)的條件下,當直線EF交x軸于點D,P為(1)中拋物線上一動點,直線PE交x軸于點G,在直線EF上方的拋物線上是否存在一點P,使得△EPF的面積是△EDG面積的()倍.若存在,請直接寫出點P坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

若二次函數(shù)y=(x-m)2-1,當x<1時,y隨x的增大而減小,則m的取值范圍是______

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

將拋物線y=x2+x向下平移2個單位,所得拋物線的表達式是________.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如果二次函數(shù)的最小值為負數(shù),則m的取值范圍是(   )
A.m﹤1B.m﹥1C.m≤1D.m≥1

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,O為坐標原點,點A、B的坐標分別為(8,0)、(0,6).動點Q從點O、動點P從點A同時出發(fā),分別沿著OA方向、AB方向均以1個單位長度/秒的速度勻速運動,運動時間為t(秒)(0<t≤5).以P為圓心,PA長為半徑的⊙P與AB、OA的另一個交點分別為C、D,連接CD、QC.
(1)求當t為何值時,點Q與點D重合?
(2)設△QCD的面積為S,試求S與t之間的函數(shù)關系式,并求S的最大值;
(3)若⊙P與線段QC只有一個交點,請直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

某一型號飛機著陸后滑行的距離y(單位:m)與滑行時間x(單位:s)之間的函數(shù)關系式是y=60x-1.5x2,該型號飛機著陸后滑行________m才能停下來.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y=ax2-5ax+4經(jīng)過△ABC的三個頂點,已知BC∥x軸,點A在x軸上,點C在y軸上,且AC=BC.

(1)求拋物線的對稱軸;
(2)寫出A,B,C三點的坐標并求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

將二次函數(shù)y=3(x+2)2-4的圖象向右平移3個單位,再向上平移1個單位,所得的圖象的函數(shù)關系式是
A.y=3(x+5)2-5B.y=3(x-1)2-5
C.y=3(x-1)2-3D.y=3(x+5)2-3

查看答案和解析>>

同步練習冊答案