【題目】如圖,MN是半徑為2的⊙O的直徑,點A在⊙O上,∠AMN=30°,點B為劣弧AN的中點.點P是直徑MN上一動點,則PAPB的最小值為(  )

A. 4 B. 2 C. 4 D. 2

【答案】D

【解析】作點B關(guān)于MN的對稱點B′,連接OA、OBOB′、AB′,ABMN的交點即為PA+PB的最小時的點,PA+PB的最小值=AB′.∵∠AMN=30°,∴∠AON=2∠AMN=2×30°=60°.∵B為劣弧AN的中點,∴∠BON=AON=×60°=30°,由對稱性,∠BON=∠BON=30°,∴∠AOB′=∠AON+∠BON=60°+30°=90°,∴△AOB是等腰直角三角形,∴AB′=OA=×2=PA+PB的最小值=故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點 A(5,0)B(3,0)

(1)若點 C y 軸上,且使得ABC 的面積等于 16,求點 C 的坐標(biāo);

(2)若點 C 在坐標(biāo)平面內(nèi),且使得ABC 的面積等于 16,這樣的點 C 有多少個?你發(fā) 現(xiàn)了什么規(guī)律?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為了了解學(xué)生對手機的依賴程度,開展了一次“學(xué)生周末手機使用時間”抽樣調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如下兩種不完整的統(tǒng)計圖表.

組別

周末手機使用時間

人數(shù)

20

22

10

8

請根據(jù)圖表信息解答下列問題:

(1)本次抽樣,共調(diào)查了 人;

(2)扇形統(tǒng)計圖中“”所對應(yīng)的圓心角的度數(shù)是/span> ;

(3)估計該校2450名學(xué)生中周末手機使用時間小于2小時的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形中,,,是邊的中點,連接延長與的延長線相交于點,連接

)求證:四邊形是平行四邊形.

)已知,求四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,ABCD,∠PAB=120°,∠PCD=110°,求∠APC的度數(shù).小穎同學(xué)的解題思路是:如圖2,過點PPEAB,請你接著完成解答;如圖3,點A、B在射線OM上,點C、D在射線ON上,ADBC,點P在射線OM上運動(點PAB、O三點不重合).

(2)當(dāng)點P在線段AB上運動時,判斷∠CPD與∠ADP、∠BCP之間的數(shù)量關(guān)系,并說明理由;

(3)當(dāng)點P在線段AB外運動時,判斷∠CPD與∠ADP、∠BCP之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑作⊙OAB于點D點,連接CD

1)求證:∠A=∠BCD

2)若M為線段BC上一點,試問當(dāng)點M在什么位置時,直線DM⊙O相切?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在△ABC中,以AC邊為直徑的⊙OBC于點D,在劣弧上取一點E使∠EBC=∠DEC,延長BE依次交AC于點G,交⊙OH

1)求證:AC⊥BH

2)若∠ABC=45°,⊙O的直徑等于10,BD=8,求CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形紙片ABCD中,AB=6,BC=10,點ECD上,將BCE沿BE折疊,點C恰落在邊AD上的點F處;點GAF上,將ABG沿BG折疊,點A恰落在線段BF上的點H處,有下列結(jié)論:

①∠EBG=45°;DEF∽△ABG;SABG=SFGH;AG+DF=FG.

其中正確的是__.(把所有正確結(jié)論的序號都選上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,CD是邊AB上的高,且

(1)求證:ACD∽△CBD;

(2)求∠ACB的大。

查看答案和解析>>

同步練習(xí)冊答案