【題目】如圖:

(1)試驗(yàn)觀察:

如果經(jīng)過兩點(diǎn)畫直線,那么:

組最多可以畫____條直線;

組最多可以畫____條直線;

組最多可以畫____條直線.

(2)探索歸納:

如果平面上有n(n≥3)個(gè)點(diǎn),且任意3個(gè)點(diǎn)均不在1條直線上,那么經(jīng)過兩點(diǎn)最多可以畫____條直線.(用含n的式子表示)

(3)解決問題:

某班45名同學(xué)在畢業(yè)后的一次聚會(huì)中,若每兩人握1次手問好,那么共握____次手.

【答案】3 6 10. . 990.

【解析】

(1)根據(jù)兩點(diǎn)確定一條直線,畫出直線即可;
(2)根據(jù)上面得到的規(guī)律用代數(shù)式表示即可;
(3)將n=45代入即可求解.

(1)根據(jù)圖形得:如圖:(1)試驗(yàn)觀察
如果每過兩點(diǎn)可以畫一條直線,那么:
第①組最多可以畫3條直線;
第②組最多可以畫6條直線;
第③組最多可以畫10條直線.
(2)探索歸納:
如果平面上有n(n≥3)個(gè)點(diǎn),且每3個(gè)點(diǎn)均不在1條直線上,那么最多可以畫1+2+3+…+n-1=條直線.(用含n的代數(shù)式表示)
(3)解決問題:
某班45名同學(xué)在畢業(yè)后的一次聚會(huì)中,若每兩人握1次手問好,那么共握次手.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形網(wǎng)格中,每個(gè)小正方形的邊長是1個(gè)單位長度.

(1)畫出△ABC向上平移6個(gè)單位得到的△A1B1C1;
(2)以點(diǎn)C為位似中心,在網(wǎng)格中畫出△A2B2C2 , 使△A2B2C2與△ABC位似,且△A2B2C2與△ABC的位似比為2:1,并直接寫出點(diǎn)A2的坐標(biāo);A2).
(3)請直接寫出△A2B2C2與△A1B1C1的面積比.SA2B2C2:SA1B1C1=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“一方有難,八方支援”,雅安蘆山420地震后,某單位為一中學(xué)捐贈(zèng)了一批新桌椅,學(xué)校組織初一年級200名學(xué)生搬桌椅.規(guī)定一人一次搬兩把椅子,兩人一次搬一張桌子,每人限搬一次,最多可搬桌椅(一桌一椅為一套)的套數(shù)為(
A.60
B.70
C.80
D.90

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一塊長5米寬4米的地毯,為了美觀設(shè)計(jì)了兩橫、兩縱的配色條紋(圖中陰影部分),已知配色條紋的寬度相同,所占面積是整個(gè)地毯面積的

(1)求配色條紋的寬度;
(2)如果地毯配色條紋部分每平方米造價(jià)200元,其余部分每平方米造價(jià)100元,求地毯的總造價(jià).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,已知A(2,2)、B(4,0).若在坐標(biāo)軸上取點(diǎn)C,使△ABC為等腰三角形,則滿足條件的點(diǎn)C的個(gè)數(shù)是(
A.5
B.6
C.7
D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+c與x軸交于A,B兩點(diǎn),頂點(diǎn)為C,點(diǎn)P為拋物線上,且位于x軸下方.

(1)如圖1,若P(1,﹣3),B(4,0).
①求該拋物線的解析式;
②若D是拋物線上一點(diǎn),滿足∠DPO=∠POB,求點(diǎn)D的坐標(biāo);
(2)如圖2,已知直線PA,PB與y軸分別交于E、F兩點(diǎn).當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí), 是否為定值?若是,試求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:( 2+(π﹣3.14)0﹣| |﹣2cos30°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)y= x+b的圖象與反比例函數(shù)y= (x<0)的圖象交于點(diǎn)A(﹣1,2)和點(diǎn)B,點(diǎn)C在y軸上.

(1)當(dāng)△ABC的周長最小時(shí),求點(diǎn)C的坐標(biāo);
(2)當(dāng) x+b< 時(shí),請直接寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,C為 的中點(diǎn),若∠CBD=30°,⊙O的半徑為12.
(1)求∠BAD的度數(shù);
(2)求扇形OCD的面積.

查看答案和解析>>

同步練習(xí)冊答案