【題目】如圖所示,正方形網(wǎng)格中,△ABC為格點(diǎn)三角形(即三角形的頂點(diǎn)都在格點(diǎn)上).
(1)把△ABC沿BA方向平移后,點(diǎn)A移到點(diǎn)A1,在網(wǎng)格中畫出平移后得到的△A1B1C1;
(2)把△A1B1C1繞點(diǎn)A1按逆時(shí)針方向旋轉(zhuǎn)90°,在網(wǎng)格中畫出旋轉(zhuǎn)后的△A1B2C2;
(3)如果網(wǎng)格中小正方形的邊長為1,求點(diǎn)B經(jīng)過(1)、(2)變換的路徑總長.
【答案】(1)(2)作圖見解析;(3).
【解析】
試題(1)利用平移的性質(zhì)畫圖,即對應(yīng)點(diǎn)都移動(dòng)相同的距離.
(2)利用旋轉(zhuǎn)的性質(zhì)畫圖,對應(yīng)點(diǎn)都旋轉(zhuǎn)相同的角度.
(3)利用勾股定理和弧長公式求點(diǎn)B經(jīng)過(1)、(2)變換的路徑總長.
試題解析:解:(1)如答圖,連接AA1,然后從C點(diǎn)作AA1的平行線且A1C1=AC,同理找到點(diǎn)B1,分別連接三點(diǎn),△A1B1C1即為所求.
(2)如答圖,分別將A1B1,A1C1繞點(diǎn)A1按逆時(shí)針方向旋轉(zhuǎn)90°,得到B2,C2,連接B2C2,△A1B2C2即為所求.
(3)∵,
∴點(diǎn)B所走的路徑總長=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,已知點(diǎn)的坐標(biāo),過點(diǎn)作軸,垂足為點(diǎn),過點(diǎn)作直線軸,點(diǎn)從點(diǎn)出發(fā)在軸上沿著軸的正方向運(yùn)動(dòng).
(1)當(dāng)點(diǎn)運(yùn)動(dòng)到點(diǎn)處,過點(diǎn)作的垂線交直線于點(diǎn),證明,并求此時(shí)點(diǎn)的坐標(biāo);
(2)點(diǎn)是直線上的動(dòng)點(diǎn),問是否存在點(diǎn),使得以為頂點(diǎn)的三角形和全等,若存在求點(diǎn)的坐標(biāo)以及此時(shí)對應(yīng)的點(diǎn)的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示.在△ABC中,內(nèi)角∠BAC與外角∠CBE的平分線相交于點(diǎn)P,BE=BC,PB與CE交于點(diǎn)H,PG∥AD交BC于F,交AB于G,連接CP.下列結(jié)論:①∠ACB=2∠APB;②S△PAC:S△PAB=AC:AB;③BP垂直平分CE;④∠PCF=∠CPF.其中,正確的有( )
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列括號內(nèi)填理由:已知:如圖,AC∥DE,CD、EF分別為∠ACB、∠DEB的平分線.
求證:CD∥EF
證明:∵AC∥DE〔已知)
∴ = ( )
∵CD、EF分別為∠ACB、∠DEB的平分線.(已知)
, ( )
∴∠DCB=∠FEB
∴CD∥EF( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是邊長為6 cm的等邊三角形,動(dòng)點(diǎn)P從A出發(fā),以3 cm/s的速度,沿A-B-C向C運(yùn)動(dòng),同時(shí),動(dòng)點(diǎn)Q從C出發(fā)沿CA方向以1 cm/s的速度向A運(yùn)動(dòng),當(dāng)其中一點(diǎn)運(yùn)動(dòng)到終點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t= ____s,△APQ是直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如果三角形有一邊上的中線長恰好等于這邊的長,那么這個(gè)三角形叫“恰等三角形”,這條中線叫“恰等中線”.
(直角三角形中的“恰等中線”)
(1)如圖1,在△ABC中,∠C=90°,AC=,BC=2,AM為△ABC的中線.求證:AM是“恰等中線”.
(等腰三角形中的“恰等中線”)
(2)已知,等腰△ABC是“恰等三角形”,AB=AC=20,求底邊BC的平方.
(一般三角形中的“恰等中線”)
(3)如圖2,若AM是△ABC的“恰等中線”,則BC2,AB2,AC2之間的數(shù)量關(guān)系為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“五一”期間,文具店老板購進(jìn)100只兩種型號的文具進(jìn)行銷售,其進(jìn)價(jià)和售價(jià)之間的關(guān)系如下表:
型號 | 進(jìn)價(jià)(元/只) | 售價(jià)(元/只) |
A型 | 10 | 14 |
B型 | 15 | 22 |
(1)老板如何進(jìn)貨,能使進(jìn)貨款恰好為1350元?
(2)要使銷售文具所獲利潤不少于500元,那么老板最多能購進(jìn)A型文具多少只?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,CD平分∠ACB交AB于點(diǎn)D,AE∥DC交BC的延長線于點(diǎn)E,已知∠BAC=32°,求∠E的度數(shù)為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】凱里市某文具店某種型號的計(jì)算器每只進(jìn)價(jià)12元,售價(jià)20元,多買優(yōu)惠,優(yōu)勢方法是:凡是一次買10只以上的,每多買一只,所買的全部計(jì)算器每只就降價(jià)0.1元,例如:某人買18只計(jì)算器,于是每只降價(jià)0.1×(18﹣10)=0.8(元),因此所買的18只計(jì)算器都按每只19.2元的價(jià)格購買,但是每只計(jì)算器的最低售價(jià)為16元.
(1)求一次至少購買多少只計(jì)算器,才能以最低價(jià)購買?
(2)求寫出該文具店一次銷售x(x>10)只時(shí),所獲利潤y(元)與x(只)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)一天,甲顧客購買了46只,乙顧客購買了50只,店主發(fā)現(xiàn)賣46只賺的錢反而比賣50只賺的錢多,請你說明發(fā)生這一現(xiàn)象的原因;當(dāng)10<x≤50時(shí),為了獲得最大利潤,店家一次應(yīng)賣多少只?這時(shí)的售價(jià)是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com