【題目】如圖,已知∠AOD90°,OC平分∠BOD,∠AOB與∠BOC的度數(shù)的比是47

1)求∠AOB的度數(shù).

2)若以點(diǎn)O為觀察中心,以OD為正北方向,則從方位角來(lái)說(shuō),射線OC在什么方向?

【答案】120°;(2)點(diǎn)O為觀察中心,射線OC在北偏東35°

【解析】

1)設(shè)∠AOB=4x°,則∠BOC=7x°,然后由角平分線的定義得到∠BOD=14 x°,根據(jù)∠AOD90°列方程求出x,進(jìn)而得出∠AOB的度數(shù);
2)求出∠COD的度數(shù),根據(jù)方向角的表示方法,可得答案.

解:(1)設(shè)∠AOB=4x°,則∠BOC=7x°

OC平分∠BOD

∴∠COD=BOC=7x°,∠BOD=14x°

∵∠AOD90°

4x+14x=90

x=5

4x=20

即∠AOB=20°;

2)∠COD=5×7°=35°

∴點(diǎn)O為觀察中心,以OD為正北方向,則OA為正東方向,射線OC在北偏東35°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖A在數(shù)軸上對(duì)應(yīng)的數(shù)為-2.

(1)點(diǎn)B在點(diǎn)A右邊距離A點(diǎn)4個(gè)單位長(zhǎng)度,則點(diǎn)B所對(duì)應(yīng)的數(shù)是_____.

(2)(1)的條件下,點(diǎn)A以每秒2個(gè)單位長(zhǎng)度沿?cái)?shù)軸向左運(yùn)動(dòng),點(diǎn)B以每秒3個(gè)單位長(zhǎng)度沿?cái)?shù)軸向右運(yùn)動(dòng).現(xiàn)兩點(diǎn)同時(shí)運(yùn)動(dòng),當(dāng)點(diǎn)A運(yùn)動(dòng)到-6的點(diǎn)處時(shí),求A、B兩點(diǎn)間的距離.

(3)(2)的條件下,現(xiàn)A點(diǎn)靜止不動(dòng),B點(diǎn)以原速沿?cái)?shù)軸向左運(yùn)動(dòng),經(jīng)過(guò)多長(zhǎng)時(shí)間AB兩點(diǎn)相距4個(gè)單位長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=+mx+3x軸交于AB兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)B的坐標(biāo)為(30),

1)求m的值及拋物線的頂點(diǎn)坐標(biāo).

2)點(diǎn)P是拋物線對(duì)稱軸l上的一個(gè)動(dòng)點(diǎn),當(dāng)PA+PC的值最小時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】宿豫區(qū)實(shí)驗(yàn)初中的圖書(shū)室平均每天借出圖書(shū)50冊(cè).如果某天借出53冊(cè),就記作+3;如果某天借出40冊(cè),就記作-10.上星期我校圖書(shū)室借出圖書(shū)記錄如下:

1)上星期五借出圖書(shū)多少冊(cè)?

2)上星期二比上星期五多借出圖書(shū)多少冊(cè)?

3)上星期總共借出圖書(shū)多少冊(cè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先閱讀下面的文字,然后按要求解題:

例:1+2+3+ … +100=?

如果一個(gè)一個(gè)順次相加顯然太繁瑣,我們仔細(xì)分析這100個(gè)連續(xù)自然數(shù)的規(guī)律和特點(diǎn),可以發(fā)現(xiàn)運(yùn)用加法運(yùn)算律,是可以大大簡(jiǎn)化計(jì)算,提高運(yùn)算速度的.

因?yàn)?/span>1+100=2+99=3+98= … =50+51=101

所以將所給算式中各加數(shù)經(jīng)過(guò)交換、結(jié)合以后,可以很快求出結(jié)果.

解:1+2+3+ … +100

=(1+100)+(2+99)+(3+98)+ … +(50+51)

=101×____________

=____________ .

(1)補(bǔ)全例題的解題過(guò)程;

(2)計(jì)算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】商人小周于上周買(mǎi)進(jìn)某農(nóng)場(chǎng)品10000,每千克2.4元,進(jìn)入批發(fā)市場(chǎng)后共占5個(gè)攤位,每個(gè)攤位最多能容納2000該品種的農(nóng)產(chǎn)品,每個(gè)攤位的市場(chǎng)管理價(jià)為每天20.下表為本周內(nèi)該農(nóng)產(chǎn)品每天的批發(fā)價(jià)格比前一天的漲跌情況.

星期

與前一天相比價(jià)格的漲跌情況/

+0.3

-0.1

+0.25

+0.2

-0.5

當(dāng)天的交易量/

2500

2000

3000

1500

1000

(1)星期四該農(nóng)產(chǎn)品的價(jià)格為每千克多少元?

(2)本周內(nèi)該農(nóng)產(chǎn)品的最高價(jià)格為每千克多少元?最低價(jià)格為每千克多少元?

(3)小周在銷(xiāo)售過(guò)程中采用逐步減少攤位個(gè)數(shù)的方法來(lái)降低成本,增加收益,這樣他在本周的買(mǎi)賣(mài)中共賺了多少錢(qián)?請(qǐng)你幫他算一算.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,用棋子擺成的字:

第一個(gè) 第二個(gè) 第三個(gè)

如果按照以上規(guī)律繼續(xù)擺下去,那么通過(guò)觀察,可以發(fā)現(xiàn):

(1)第四、第五個(gè)字分別需用      枚棋子.

(2)第n個(gè)字需用   枚棋子.

(3)如果某一圖形共有102枚棋子,你知道它是第幾個(gè)字嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形AECF中,CECF分別是ABC的內(nèi),外角平分線.

1)求證:四邊形AECF是矩形.

2)當(dāng)ABC滿足什么條件時(shí),四邊形AECF是正方形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)M的坐標(biāo)為(x1,y1),點(diǎn)N的坐標(biāo)為(x2,y2),且x1≠x2,y1≠y2,以MN為邊構(gòu)造菱形,若該菱形的兩條對(duì)角線分別平行于x軸,y軸,則稱該菱形為邊的“坐標(biāo)菱形”.

(1)已知點(diǎn)A(2,0),B(0,2),則以AB為邊的“坐標(biāo)菱形”的最小內(nèi)角為   ;

(2)若點(diǎn)C(1,2),點(diǎn)D在直線y=5上,以CD為邊的“坐標(biāo)菱形”為正方形,求直線CD 表達(dá)式;

(3)⊙O的半徑為,點(diǎn)P的坐標(biāo)為(3,m).若在O上存在一點(diǎn)Q,使得以QP為邊的“坐標(biāo)菱形”為正方形,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案