【題目】如圖(1)是重慶中國(guó)三峽博物館,又名重慶博物館,中央地方共建國(guó)家級(jí)博物館圖(2)是側(cè)面示意圖.某校數(shù)學(xué)興趣小組的同學(xué)要測(cè)量三峽博物館的高GE.如(2),小杰身高為1.6米,小杰在A處測(cè)得博物館樓頂G點(diǎn)的仰角為27°,前進(jìn)12米到達(dá)B處測(cè)得博物館樓頂G點(diǎn)的仰角為39°,斜坡BD的坡i12.4,BD長(zhǎng)度是13米,GEDE,AB、D、E、G在同一平面內(nèi),則博物館高度GE約為_____米.(結(jié)果精確到1米,參考數(shù)據(jù)tan27°≈0.50,tan39°≈0.80

【答案】13

【解析】

如圖,延長(zhǎng)CFGE的延長(zhǎng)線于H,延長(zhǎng)GEAB的延長(zhǎng)線于J.設(shè)GE=xm.根據(jù)CH-FH=CF,構(gòu)建方程即可解決問題;

解:如圖,延長(zhǎng)CFGE的延長(zhǎng)線于H,延長(zhǎng)GEAB的延長(zhǎng)線于J.設(shè)GExm

RtBDK中,∵BD13,DKBK12.4,

DK5,BK12,

ACBFHJ1.6,DKEJ5,

EH51.63.4,

CHFHCF,

12,

12,

x12.6≈13m),

故答案為13

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】重慶八中將于2017年整體搬遷至渝北空港新城,新校園工程建設(shè)正在如火如荼的進(jìn)行.經(jīng)工程部管理人員同意,四位同學(xué)前往工地進(jìn)行社會(huì)實(shí)踐活動(dòng).如圖,A、B、C是三個(gè)建筑原材料存放點(diǎn),點(diǎn)B、C分別位于點(diǎn)A的正北和正東方向,AC400米.四人分別測(cè)得∠C的度數(shù)如表:

C(單位:度)

34

36

38

40

他們又調(diào)查了各點(diǎn)的建筑材料存放量,并繪制了下列尚不完整的統(tǒng)計(jì)如圖、如圖:

1)求表中∠C度數(shù)的平均數(shù);

2)求A處的建筑原材料存放量,并將如圖補(bǔ)充完整;

3)用(1)中的作為∠C的度數(shù),要將A處的全部建筑原材料沿道路AB運(yùn)到B處,已知運(yùn)1方建筑原材料每米的費(fèi)用為0.1元,求運(yùn)完全部建筑原材料所需的費(fèi)用.(注:sin37°0.6,cos37°0.8,tan37°0.75

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB3cm,AD4cm,EF經(jīng)過對(duì)角線BD的中點(diǎn)O,分別交AD,BC于點(diǎn)EF

1)求證:△BOF≌△DOE;

2)當(dāng)EFBD時(shí),求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明想測(cè)量斜坡旁一棵垂直于地面的樹的高度,他們先在點(diǎn)處測(cè)得樹頂的仰角為,然后在坡頂測(cè)得樹頂的仰角為,已知斜坡的長(zhǎng)度為,斜坡頂點(diǎn)到地面的垂直高度,則樹的高度是(

A. 20B. 30C. 30D. 40

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線y=2x+b分別交x,y軸于點(diǎn)AC,拋物線y=ax2+x+4經(jīng)過AC兩點(diǎn),交x軸于另外一點(diǎn)B

1)求拋物線的解析式;

2)點(diǎn)P在第一象限內(nèi)拋物線上,連接PB、PC,作平行四邊形PBDCDEy軸于點(diǎn)E,設(shè)點(diǎn)P 的橫坐標(biāo)為t,線段DE的長(zhǎng)度為d,求dt之間的函數(shù)關(guān)系式.

3)在(2)的條件下,延長(zhǎng)BD交直線AC與點(diǎn)F,連接OF,若∠AFO=BFO,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,拋物線y=﹣x2+x+4x軸交于AB兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)D為線段AC的中點(diǎn),直線BD與拋物線交于另一點(diǎn)E,與y軸交于點(diǎn)F

1)求直線BD的解析式;

2)如圖②,點(diǎn)P是直線BE上方拋物線上一動(dòng)點(diǎn),連接PD,PF,當(dāng)PDF的面積最大時(shí),在線段BE上找一點(diǎn)G,使得PGGE的值最小,求出點(diǎn)G的坐標(biāo)及PGGE的最小值;

3)將拋物線沿直線AC平移,點(diǎn)AC平移后的對(duì)應(yīng)點(diǎn)為A,C'.在平面內(nèi)有一動(dòng)點(diǎn)H,當(dāng)以點(diǎn)B,A'C',H為頂點(diǎn)的四邊形為平行四邊形時(shí),在直線AC上方找一個(gè)滿足條件的點(diǎn)H,與直線AC下方所有滿足條件的點(diǎn)H為頂點(diǎn)的多邊形為軸對(duì)稱圖形時(shí),求出點(diǎn)A的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)給定的一張矩形紙片進(jìn)行如下操作:先沿折疊,使點(diǎn)落在邊上(如圖①),再沿折疊,這時(shí)發(fā)現(xiàn)點(diǎn)恰好與點(diǎn)重合(如圖②)

(1)根據(jù)以上操作和發(fā)現(xiàn),則____;

(2)將該矩形紙片展開,如圖③,折疊該矩形紙片,使點(diǎn)與點(diǎn)重合,折痕與相交于點(diǎn),再將該矩形紙片展開.

求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,OAOB,ABx軸于點(diǎn)C,點(diǎn)A1)在反比例函數(shù)的圖象上.

1)求反比例函數(shù)的表達(dá)式;

2)在x軸的負(fù)半軸上存在一點(diǎn)P,使得SAOP=SAOB,求點(diǎn)P的坐標(biāo);

3)若將△BOA繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn)60°得到△BDE.直接寫出點(diǎn)E的坐標(biāo),并判斷點(diǎn)E是否在該反比例函數(shù)的圖象上,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)李飛與劉亮射擊訓(xùn)練的成績(jī)繪制了如圖所示的折線統(tǒng)計(jì)圖.

根據(jù)圖所提供的信息,若要推薦一位成績(jī)較穩(wěn)定的選手去參賽,應(yīng)推薦( 。

A. 李飛或劉亮 B. 李飛 C. 劉亮 D. 無法確定

查看答案和解析>>

同步練習(xí)冊(cè)答案