【題目】如圖,在數(shù)軸上點(diǎn)表示的數(shù)是點(diǎn)在點(diǎn)的右側(cè),且到點(diǎn)的距離是18;點(diǎn)在點(diǎn)與點(diǎn)之間,且到點(diǎn)的距離是到點(diǎn)距離的2.

(1)點(diǎn)表示的數(shù)是____________;點(diǎn)表示的數(shù)是_________;

(2)若點(diǎn)P從點(diǎn)出發(fā),沿?cái)?shù)軸以每秒4個單位長度的速度向右勻速運(yùn)動;同時,點(diǎn)Q從點(diǎn)B出發(fā),沿?cái)?shù)軸以每秒2個單位長度的速度向左勻速運(yùn)動。設(shè)運(yùn)動時間為秒,在運(yùn)動過程中,當(dāng)為何值時,點(diǎn)P與點(diǎn)Q之間的距離為6?

(3)在(2)的條件下,若點(diǎn)P與點(diǎn)C之間的距離表示為PC,點(diǎn)Q與點(diǎn)B之間的距離表示為在運(yùn)動過程中,是否存在某一時刻使得?若存在,請求出此時點(diǎn)表示的數(shù);若不存在,請說明理由.

【答案】(1)15, 3;(2)t=2或4;(3)1或

【解析】

(1)利用數(shù)軸建立原點(diǎn),再用AC和BC之間的關(guān)系即可求解;

(2)這里需要注意,存在2種情況使得P與點(diǎn)Q之間的距離為6,利用數(shù)軸將含t的表達(dá)式求解即可;

(3)先將PC+QB=4當(dāng)做已知條件,再將PC和QB的算式代入求解即可.

(1)由題意可得:AB=18, A0=3(0為原點(diǎn)),

∴B0=AB-A0=15,

∵BC=2AC,

∴B0-0C=2(A0+0C),

∴0C=3.

故答案為:15, 3

(2)由題意可得:存在2種情況點(diǎn)P與點(diǎn)Q之間的距離為6,

①點(diǎn)P與點(diǎn)Q相遇前,18-6=(4+2)t ,則t=2秒;

②點(diǎn)P與點(diǎn)Q相遇后,18+6=(4+2)t ,則t=4.

故答案為:t=2或4.

(3)由題意可得:AC=6,PC=6-4t,QB=2t,

若PC+QB=4,

6-4t│+2t=4,

解得t=1或

故答案為:點(diǎn)表示的數(shù)是1或

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形 ABCD 的邊長為 5,點(diǎn) M 是邊 BC 上的點(diǎn),DE⊥AM 于點(diǎn) E,BF∥DE,交 AM 于點(diǎn) F.若E AF 的中點(diǎn),則 DE 的長為(

A.B.2C.4D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列條件中能判定四邊形ABCD是平行四邊形的是( 。

A.AB,CDB.ABAD,CBCD

C.ABCD,ADBCD.ABCDADBC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,∠ACO90°,∠AOC30°,分別以AOCO為邊向外作等邊三角形AOD和等邊三角形COE,DFAOF,連DEAOG

1)求證:DFG≌△EOG;

2HAD的中點(diǎn),連HG,求證:CD2HG;

3)在(2)的條件下,AC4,若MAC的中點(diǎn),求MG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

(1)(-8)+10-2+(-1); (2)12-7×(-4)+8÷(-2);

(3)()÷(-); (4)-14-(1+0.5)×÷(-4)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某汽車銷售公司4月份銷售某廠家的汽車,在一定范圍內(nèi)每部汽車的進(jìn)價與銷售量有如下關(guān)系;若當(dāng)月僅售出1輛汽車,則該部汽車的進(jìn)價為25萬元,每多售出1輛,所有售出的汽車的進(jìn)價均降低0.2萬元/輛,月底廠家根據(jù)銷售量一次性返利給銷售公司,銷售量在10輛以內(nèi)(含10輛),每輛返利0.6萬元;銷售量在10輛以上,每輛返利1.2萬元.

1)若該公司當(dāng)月售出3輛汽車,則每輛汽車的進(jìn)價為________萬元;

2)若該公司當(dāng)月售出5輛汽車,且每輛汽車售價為元,則該銷售公司該月盈利________萬元(用含的代數(shù)式表示).

3)如果汽車的售價為25.6萬元/輛,該公司計(jì)劃當(dāng)月盈利16.8萬元,那么需要售出多少輛汽車?(盈利銷售利潤+返利)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知△ABC內(nèi)接于⊙O,點(diǎn)D在OC的延長線上,sin B=D30°

(1)求證AD是⊙O的切線;

(2)若AC=6,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,四邊形OABC是正方形,點(diǎn)A,C的坐標(biāo)分別為(2,0),(0,2),D是x軸正半軸上的一點(diǎn)(點(diǎn)D在點(diǎn)A的右邊),以BD為邊向外作正方形BDEF(E,F(xiàn)兩點(diǎn)在第一象限),連接FC交AB的延長線于點(diǎn)G.若反比例函數(shù)的圖象經(jīng)過點(diǎn)E,G兩點(diǎn),則k的值為 ______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為迎接全國文明城市的評選,市政府決定對春風(fēng)路進(jìn)行市政化改造,經(jīng)過市場招標(biāo),決定聘請甲、乙兩個工程隊(duì)合作施工,已知春風(fēng)路全長24千米,甲工程隊(duì)每天施工的長度比乙工程隊(duì)每天施工長度的多施工0.4千米,由甲工程隊(duì)單獨(dú)施工完成任務(wù)所需要的天數(shù)是乙工程隊(duì)單獨(dú)完成任務(wù)所需天數(shù)的

(1)求甲、乙兩個工程隊(duì)每天各施工多少千米?

(2)若甲工程隊(duì)每天的施工費(fèi)用為0.8萬元,乙工程隊(duì)每天的施工費(fèi)用為0.5萬元,要使兩個工程隊(duì)施工的總費(fèi)用不超過7萬元,則甲工程隊(duì)至多施工多少天?

查看答案和解析>>

同步練習(xí)冊答案