【題目】如圖,在平面直角坐標系中,點 A,B的坐標分別為(0,3),(1,0),△ABC是等腰直角三角形,∠ABC=90°.

(1)圖1中,點C的坐標為 ;

(2)如圖2,點D的坐標為(0,1),點E在射線CD上,過點BBFBEy軸于點F

①當點E為線段CD的中點時,求點F的坐標;

②當點E在第二象限時,請直接寫出F點縱坐標y的取值范圍.

【答案】(1 ) C(4,1);(2)①F( 0 , 1 ),②

【解析】試題分析: 過點軸作垂線,通過三角形全等,即可求出點坐標.

過點EEMx軸于點M根據(jù)的坐標求出點的坐標,OM=2,得到 得到△OBF為等腰直角三角形,即可求出點的坐標.

直接寫出點縱坐標的取值范圍.

試題解析:(1 ) C(4,1),

2)法一:過點EEMx軸于點M

C4,1),D0,1),ECD中點,

CDx軸,EM=OD=1,

OM=2,

∴∠OBF=45°

OBF為等腰直角三角形,

OF=OB=1.

法二:在OB的延長線上取一點M.

∵∠ABC=AOB=90°.

∴∠ABO+CBM=90° .

ABO+BAO =90°.

∴∠BAO=CBM .

C(4,1).

D(0,1).

又∵CDOM ,CD=4.

∴∠DCB=CBM.

∴∠BAO=ECB.

∵∠ABC=FBE=90°.

∴∠ABF=CBE.

=BC.

∴△ABF≌△CBE(ASA).

AF=CE=CD=2,

A(0,3),

OA=3,

OF=1.

F(0,1) ,

(3) .

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以矩形ABCD的邊CD為直徑作⊙O,交矩形的對角線BD于點E,點F是BC的中點,連接EF.

(1)試判斷EF與⊙O的位置關系,并說明理由.

(2)若DC=2,EF=,點P是⊙O上不與E、C重合的任意一點,則∠EPC的度數(shù)為 (直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校對學生就“食品安全知識”進行了抽樣調查(每人選填一類),繪制了如圖所示的兩幅統(tǒng)計圖(不完整)。請根據(jù)圖中信息,解答下列問題:

(1)根據(jù)圖中數(shù)據(jù),求出扇形統(tǒng)計圖中的值,并補全條形統(tǒng)計圖。

(2)該校共有學生900人,估計該校學生對“食品安全知識”非常了解的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,將ABCD放置在第一象限,且ABx軸.直線y=﹣x從原點出發(fā)沿x軸正方向平移,在平移過程中直線被平行四邊形截得的線段長度l與直線在x軸上平移的距離m的函數(shù)圖象如圖2所示,那么AD的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A坐標(0,6),ACy軸,且AC=AO,點B,C橫坐標相同,點D在AC上,tan∠AOD=,若反比例函數(shù)y=(x>0)的圖象經過點B、D.

(1)求:k及點B坐標;

(2)將AOD沿著OD折疊,設頂點A的對稱點A1的坐標是A1(m,n),求:代數(shù)式m+3n的值以及點A1的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ABC,AHBC,垂足為H,AB+BH=CH,ABH=80°,則∠BAC=_________ 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知BADBCE均為等腰直角三角形,∠BAD =BCE = 90°,點MAN的中點,過點EAD平行的直線交射線AM于點N。

1)當A,B,C三點在同一直線上時(如圖1),求證:AD=NE ;

2)將圖1中的BCE繞點B旋轉,當A,BE三點在同一直線上時(如圖2),求證:ACN為等腰直角三角形;

3)將圖1BCE繞點B旋轉到圖3位置時,(2)中的結論是否仍成立?若成立,請證明;若不成立,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線.

1)若點(-1,a)(,b)都在該直線上,比較ab的大;

2)在平面直角坐標系中,求該直線與兩坐標軸的交點坐標;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,下列條件之一能使平行四邊形是菱形的為(

;②;③;④

A. ①③ B. ②③ C. ③④ D. ①②③

查看答案和解析>>

同步練習冊答案