【題目】如果∠α和∠β互補(bǔ),且∠α>β,則下列表示∠β的余角的式子中:①90°﹣β;②∠α﹣90°α+β);α﹣β).正確的有( 。

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

【答案】B

【解析】

根據(jù)角的性質(zhì),互補(bǔ)兩角之和為180°,互余兩角之和為90°,可將①②③④中的式子化為含有∠α+∠β的式子,再將∠α+∠β=180°代入即可解出此題

∵∠α和∠β互補(bǔ),∴∠α+∠β=180°.因?yàn)?/span>90°﹣∠β+∠β=90°,所以正確;

又∠α﹣90°+∠β=∠α+∠β﹣90°=180°﹣90°=90°,也正確;

(∠α+∠β)+∠β180°+∠β=90°+∠β≠90°,所以錯(cuò)誤;

(∠α﹣∠β)+∠β(∠α+∠β180°=90°,所以正確

綜上可知①②④均正確

故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,某人在山坡坡腳A處測(cè)得電視塔尖點(diǎn)C的仰角為60°,沿山坡向上走到P處再測(cè)得C的仰角為45°,已知OA=200米,山坡坡度為 (即tan∠PAB= ),且O,A,B在同一條直線上,求電視塔OC的高度以及此人所在的位置點(diǎn)P的垂直高度.(側(cè)傾器的高度忽略不計(jì),結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,C,D是⊙O上的點(diǎn),∠CDB=20°,過(guò)點(diǎn)C作⊙O的切線交AB的延長(zhǎng)線于點(diǎn)E,則∠E=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知BDC+EFC180°,DEFB

(1)DEBC是否平行,請(qǐng)說(shuō)明理由;

(2)D、E、F分別為ABACDC中點(diǎn),連接BF,若四邊形 ADEF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABCO的頂點(diǎn)A、C分別在直線x2x7上,O是坐標(biāo)原點(diǎn),則對(duì)角線OB長(zhǎng)的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題發(fā)現(xiàn):數(shù)學(xué)興趣小組在活動(dòng)時(shí),老師提出了這樣一個(gè)問(wèn)題:如圖①,在RtABC中,∠BAC90°BC10ADBC邊上的中線,求AD的長(zhǎng)度.小明在組內(nèi)經(jīng)過(guò)合作交流,得到了如下的解決方法:延長(zhǎng)ADE,使DEAD,則ADAE

在△ADC和△EDB

∴△ADC≌△EDB

∴∠DBE=∠DCA,BEAC

BEAC

∴∠EBA+BAC180°

∵∠BAC90°

∴∠EBA90°

在△EBA和△CAB

∴△EBA≌△CAB

AEBC

BC10

ADAEBC5

1)若將上述問(wèn)題中條件“BC10”換成“BCa”,其他條件不變,則可得AD   

從上得到結(jié)論:直角三角形斜邊上的中線,等于斜邊的一半.

(感悟)解題時(shí),條件中若出現(xiàn)“中點(diǎn)”“中線”等字樣,可以考慮延長(zhǎng)中線構(gòu)造全等三角形進(jìn)而求解.

問(wèn)題解決:(2)如圖②,在四邊形ABCD中,ADBC,∠D90°,MAB的中點(diǎn).若CM6.5,BC+CD+DA17,求四邊形ABCD的面積.

問(wèn)題拓展:(3)如圖③,在平行四邊形ABCD中,AD2ABFAD的中點(diǎn),作CEAB,垂足E在線段AB上,連接EF、CF,∠DFE與∠AEF的度數(shù)滿足數(shù)量關(guān)系:∠DFEkAEF,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將矩形紙片的兩只直角分別沿EF、DF翻折,點(diǎn)B恰好落在AD邊上的點(diǎn)B′處,點(diǎn)C恰好落在邊B′F上.若AE=3,BE=5,則FC=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明家住房戶型呈長(zhǎng)方形,平面圖如下(單位:米).現(xiàn)準(zhǔn)備鋪設(shè)整個(gè)長(zhǎng)方形地面,其中三間臥室鋪設(shè)木地板,其它區(qū)域鋪設(shè)地磚.(房間內(nèi)隔墻寬度忽略不計(jì))

1)求a的值;

2)請(qǐng)用含x的代數(shù)式分別表示鋪設(shè)地面需要木地板和地磚各多少平方米;

3)按市場(chǎng)價(jià)格,木地板單價(jià)為300/平方米,地磚單價(jià)為100/平方米.裝修公司有A,B兩種活動(dòng)方案,如表:

已知臥室2的面積為21平方米,則小方家應(yīng)選擇哪種活動(dòng),使鋪設(shè)地面總費(fèi)用(含材料費(fèi)及安裝費(fèi))更低?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠A=84°,點(diǎn)O是∠ABC,∠ACB角平分線的交點(diǎn),點(diǎn)P是∠BOC,∠OCB角平分線的交點(diǎn),若∠P=100°,則∠ACB的大小為__________

查看答案和解析>>

同步練習(xí)冊(cè)答案