【題目】如圖,BD為⊙O的直徑,AB=AC,AD交BC于點E,AE=2,ED=4,
(1)求證:△ABE∽△ADB;
(2)求AB的長;
(3)延長DB到F,使得BF=BO,連接FA,試判斷直線FA與⊙O的位置關(guān)系,并說明理由.
【答案】
【解析】試題分析:(1)根據(jù)AB=AC,可得∠ABC=∠C,利用等量代換可得∠ABC=∠D然后即可證明△ABE∽△ADB.
(2)根據(jù)△ABE∽△ADB,利用其對應(yīng)邊成比例,將已知數(shù)值代入即可求得AB的長.
(3)連接OA,根據(jù)BD為⊙O的直徑可得∠BAD=90°,利用勾股定理求得BD,然后再求證∠OAF=90°即可.
(1)證明:∵AB=AC,
∴∠ABC=∠C(等邊對等角),
∵∠C=∠D(同弧所對的圓周角相等),
∴∠ABC=∠D(等量代換),
又∵∠BAE=∠DAB,
∴△ABE∽△ADB,
(2)解:∵△ABE∽△ADB,
∴,
∴AB2=ADAE=(AE+ED)AE=(2+4)×2=12,
∴AB=.
(3)解:直線FA與⊙O相切,理由如下:
連接OA,∵BD為⊙O的直徑,
∴∠BAD=90°,
∴=4
BF=BO=,
∵AB=,
∴BF=BO=AB,
∴∠OAF=90°,
∴OA⊥AF,
∵AO是圓的半徑,
∴直線FA與⊙O相切.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若a>b,則下列各式中正確的是( )
A. a-c<b-cB. ac>bcC. -(c≠0)D. a(c2+1)>b(c2+1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A,B為定點,定直線l//AB,P是l上一動點.點M,N分別為PA,PB的中點,對于下列各值:①線段MN的長;②△PMN的面積;③△PAB的周長;④∠APB的大;⑤直線MN,AB之間的距離.其中會隨點P的移動而不改變的是( )
A. ①②③ B. ①②⑤ C. ②③④ D. ②④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在以點O為圓心的兩個同心圓中,大圓的弦AB交小圓于點C、D(如圖).
(1)求證:AC=BD;
(2)若大圓的半徑R=10,小圓的半徑r=8,且圓心O到直線AB的距離為6,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分6分)
(1)(3分)(-3)2-|-|+(3.14-x)0
(2)(4分)先化簡,再求值:[(2x-y)2+(2x-y)(2x+y)]÷(4x),其中x=2,y=-1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知AB是⊙O的直徑,BC⊥AB,連接OC,弦AD∥OC,直線CD交BA的延長線于點E.
(1)求證:直線CD是⊙O的切線;
(2)若DE=2BC,求AD:OC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖AB∥CD,點P是平面內(nèi)直線AB、CD外一點連接PA、PC。
(1)寫出所給的四個圖形中∠APC、∠PAB、∠PCD之間的數(shù)量關(guān)系;
(2)證明圖(1)和圖(3)的結(jié)論。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,∠1=∠2,CF⊥AB,DE⊥AB,垂足分別為點F、E,求證:FG∥BC.
證明:∵CF⊥AB、DE⊥AB(已知)
∴∠BED=90°、∠BFC=90°
∴∠BED=∠BFC
∴( )∥( )( )
∴∠1=∠BCF( )
又∵∠1=∠2(已知)
∴∠2=∠BCF( )
∴FG∥BC( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,于點
(1)如圖1,若的角平分線交于點,,,求的度數(shù);
(2)如圖2,點分別在線段上,將折疊,點落在點處,點落在點處,折痕分別為和,且點,點均在直線上,若,試猜想與之間的數(shù)量關(guān)系,并加以證明;
(3)在(2)小題的條件下,將繞點逆時針旋轉(zhuǎn)一個角度(),記旋轉(zhuǎn)中的為(如圖3),在旋轉(zhuǎn)過程中,直線與直線交于點,直線與直線交于點,若,是否存在這樣的兩點,使為直角三角形?若存在,請直接寫出旋轉(zhuǎn)角的度數(shù);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com