【題目】水果店購進某種水果的成本為10/千克,經(jīng)市場調(diào)研,獲得銷售單價p(元/千克)與銷售時間t1≤t≤15,t為整數(shù))(天)之間的部分?jǐn)?shù)據(jù)如下表:

銷售時間t1≤t≤15t為整數(shù))(天)

1

4

5

8

12

銷售單價p(元/千克)

20.25

21

21.25

22

23

已知pt之間的變化規(guī)律符合一次函數(shù)關(guān)系.

1)試求p關(guān)于t的函數(shù)表達式;

2)若該水果的日銷量y(千克)與銷售時間t(天)的關(guān)系滿足一次函數(shù)y=2t+1201≤t≤15,t為整數(shù)).

求銷售過程中最大日銷售利潤為多少?

在實際銷售的前12天中,公司決定每銷售1千克水果就捐贈n元利潤(n3)給精準(zhǔn)扶貧對象.現(xiàn)發(fā)現(xiàn):在前12天中,每天扣除捐贈后的日銷售利潤隨時間t的增大而增大,求n的取值范圍

【答案】1p=t+201≤t≤15t為整數(shù));(2)①1250元;②1≤n3

【解析】

1)設(shè)p=kt+b,利用待定系數(shù)法即可解決問題;

2)日利潤=日銷售量×每公斤利潤,根據(jù)函數(shù)性質(zhì)求最大值后比較得結(jié)論;

3)列式表示前12天中每天扣除捐贈后的日銷售利潤,根據(jù)函數(shù)性質(zhì)求n的取值范圍.

解:(1)設(shè)pt之間的變化的一次函數(shù)關(guān)系為:p=kt+b

將點(4,21)(8,22)代入上式得:,解得:,

p關(guān)于t的函數(shù)表達式為:p=t+201≤t≤15t為整數(shù));

2設(shè)日銷售利潤為w,由題意得:

w=y(p-10)=(2t+120) (t+10)

=-t2+10t+1200

=-(t-10)2+12501≤t≤15,t為整數(shù)),

0,故w有最大值,

∴當(dāng)t=10時,w的最大值為1250;

故銷售過程中最大日銷售利潤為1250元;

設(shè)捐贈后的日銷售利潤為m,由題意得:

m=w-n=t2+10t+1200-n(2t+120)

=t2+10t+1200+2nt-120n

=-t2+(10+2n)t+1200-120n

在前12天中,每天扣除捐贈后的日銷售利潤隨時間t的增大而增大,

,

∴n≥1

∵n3

∴n的取值范圍為1≤n3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=3,BC=4,動點PA點出發(fā),按A→B→C的方向在ABBC上移動,記PA=x,點D到直線PA的距離為y,則y關(guān)于x的函數(shù)圖象大致是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y軸,x軸分別相交于點A、B.點Dx軸上動點,點D從點B出發(fā)向原點O運動,點E在點D右側(cè),DE=2BD.過點DDHAB于點H,將△DBH沿直線DH翻折,得到△DCH,連接CE.設(shè)BD=t,△DCE與△AOB重合部分面積為S.求:

1)求線段BC的長(用含t的代數(shù)式表示);

2)求S關(guān)于t的函數(shù)解析式,并直接寫出自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB⊙O的直徑,點C⊙O上,過點C的直線與AB的延長線交于點PACPC,∠COB2∠PCB

1)求證:PC⊙O的切線;

2)點M的中點,CMAB于點N,若AB6,求MNMC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是圓O的直徑,O為圓心,AD、BD是半圓的弦,且∠PDA=PBD.延長PD交圓的切線BE于點E

1)證明:直線PD是⊙O的切線;

2)如果∠BED=60°,PD=,求PA的長;

3)將線段PD以直線AD為對稱軸作對稱線段DF,點F正好在圓O上,如圖2,求證:四邊形DFBE為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正△ABC的邊長為2,以BC邊上的高AB1為邊作正△AB1C1,△ABC與△AB1C1公共部分的面積記為S1;再以正△AB1C1邊B1C1上的高AB2為邊作正△AB2C2,△AB1C1與△AB2C2公共部分的面積記為S2;…,以此類推,則Sn=____.(用含n的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC的兩條直角邊AB=4cmAC=3cm,點D沿ABAB運動,速度是1cm/秒,同時,點E沿BCBC運動,速度為2cm/. 動點E到達點C時運動終止.連結(jié)DECD、AE.1)填空:當(dāng)動點運動_______ 秒時,△BDE△ABC相似?

2)設(shè)動點運動t秒時△ADE的面積為s,求st的函數(shù)解析式;

3)在運動過程中是否存在某一時刻t,使CD⊥DE?若存在,求出時刻t;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點A(-1.5,0),B(0,2),將△ABO順著x軸的正半軸無滑動的滾動,第一次滾動到①的位置,點B的對應(yīng)點記作B1;第二次滾動到②的位置,點B1的對應(yīng)點記作B2;第三次滾動到③的位置,點B2的對應(yīng)點記作B3;依次進行下去,則點B2020的坐標(biāo)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+c的圖象,經(jīng)過點A1,0),B30),C03)三點,過點CD(﹣3,0)的直線與拋物線的另一交點為E

1)請你直接寫出:

拋物線的解析式   ;

直線CD的解析式   ;

E的坐標(biāo)(   ,   );

2)如圖1,若點Px軸上一動點,連接PCPE,則當(dāng)點P位于何處時,可使得∠CPE45°,請你求出此時點P的坐標(biāo);

3)如圖2,若點Q是拋物線上一動點,作QHx軸于H,連接QA,QB,當(dāng)QB平分∠AQH時,請你直接寫出此時點Q的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案