【題目】如圖,△ABC中,A,B兩個頂點在x軸上方,點C的坐標是(﹣1,0),以點C為位似中心,在x軸的下方作△ABC的位似圖形,并把△ABC的邊長放大到原來的2倍,得到△A'B'C',設點B的對應點B'的橫坐標為2,則點B的橫坐標為( )
A.﹣1B.C.﹣2D.
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,PB與⊙O相切于點B,連接PA交⊙O于點C,連接BC.
(1)求證:∠BAC=∠CBP;
(2)求證:PB2=PCPA;
(3)當AC=6,CP=3時,求sin∠PAB的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,一次函數y=x+4的圖象與y軸交于點A,與反比例函數y=的圖象的一個交點為M.
(1)求點A的坐標;
(2)連接OM,如果△MOA的面積等于2,求k的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】四邊形是正方形,將線段繞點逆時針旋轉,得到線段,連接,過點作交的延長線于,連接.
(1)依題意補全圖1;
(2)直接寫出的度數;
(3)連接,用等式表示線段與的數量關系,并證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】反比例函數y1=(x>0)的圖象與一次函數y2=﹣x+b的圖象交于A,B兩點,其中A(1,2)
(1)求這兩個函數解析式;
(2)在y軸上求作一點P,使PA+PB的值最小,并直接寫出此時點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀以下材料,并按要求完成相應地任務:
萊昂哈德·歐拉(Leonhard Euler)是瑞士數學家,在數學上經常見到以他的名字命名的重要常數,公式和定理,下面是歐拉發(fā)現的一個定理:在△ABC中,R和r分別為外接圓和內切圓的半徑,O和I分別為其外心和內心,則.
如圖1,⊙O和⊙I分別是△ABC的外接圓和內切圓,⊙I與AB相切分于點F,設⊙O的半徑為R,⊙I的半徑為r,外心O(三角形三邊垂直平分線的交點)與內心I(三角形三條角平分線的交點)之間的距離OI=d,則有d2=R2﹣2Rr.
下面是該定理的證明過程(部分):
延長AI交⊙O于點D,過點I作⊙O的直徑MN,連接DM,AN.
∵∠D=∠N,∠DMI=∠NAI(同弧所對的圓周角相等),
∴△MDI∽△ANI,
∴,
∴①,
如圖2,在圖1(隱去MD,AN)的基礎上作⊙O的直徑DE,連接BE,BD,BI,IF,
∵DE是⊙O的直徑,∴∠DBE=90°,
∵⊙I與AB相切于點F,∴∠AFI=90°,
∴∠DBE=∠IFA,
∵∠BAD=∠E(同弧所對圓周角相等),
∴△AIF∽△EDB,
∴,∴②,
任務:(1)觀察發(fā)現:, (用含R,d的代數式表示);
(2)請判斷BD和ID的數量關系,并說明理由;
(3)請觀察式子①和式子②,并利用任務(1),(2)的結論,按照上面的證明思路,完成該定理證明的剩余部分;
(4)應用:若△ABC的外接圓的半徑為5cm,內切圓的半徑為2cm,則△ABC的外心與內心之間的距離為 cm.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了解本校九年級學生期末數學考試情況,在九年級隨機抽取了一部分學生的期末數學成績?yōu)闃颖,分?/span>(分)、(分)、(分)、(分)四個等級進行統(tǒng)計,并將統(tǒng)計結果繪制成如下統(tǒng)計圖,請你根據統(tǒng)計圖解答以下問題:
(1)這次隨機抽取的學生共有多少人?
(2)請補全條形統(tǒng)計圖.
(3)這個學校九年級共有學生人,若分數為分(含分)以上為優(yōu)秀,請估計這次九年級學生期末數學考試成績?yōu)閮?yōu)秀的學生大約有多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,中,.
(1)請用尺規(guī)作圖的方法在邊上確定點,使得點到邊的距離等于的長;(保留作用痕跡,不寫作法)
(2)在(1)的條件下,求證:.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCO的邊長為,OA與x軸正半軸的夾角為15°,點B在第一象限,點D在x軸的負半軸上,且滿足∠BDO=15°,直線y=kx+b經過B、D兩點,則b﹣k=_____.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com