【題目】如圖1,在平面直角坐標系中,拋物線y=ax2﹣4ax﹣6(a>0)與x軸交于A,B兩點,且OB=3OA,與y軸交于點C,拋物線的頂點為D,對稱軸與x軸交于點E.
(1)求該拋物線的解析式,并直接寫出頂點D的坐標;
(2)如圖2,直線y=+n與拋物線交于G,H兩點,直線AH,AG分別交y軸負半軸于M,N兩點,求OM+ON的值;
(3)如圖1,點P在線段DE上,作等腰△BPQ,使得PB=PQ,且點Q落在直線CD上,若滿足條件的點Q有且只有一個,求點P的坐標.
【答案】(1)y=(x﹣2)2﹣8,D(2,﹣8)(2)9;(3)P(2,8﹣4)
【解析】
(1)由OB=3OA可設A(-t,0),B(3t,0),代入拋物線解析式即得到關于a、t的二元方程,解方程求出a即求得拋物線解析式,配方即得到頂點D的坐標.
(2)由(1)求得t=2可知點A(-2,0),設G(x1,x12-2x1-6),H(x2,x22-2x2-6),把直線y=x+n與拋物線解析式聯(lián)立方程組,消去y后整理得關于x的一元二次方程,x1、x2即為方程的解,根據(jù)韋達定理求得x1+x2=3.設直線AG解析式為y=kx+b,把點A、G坐標代入求出b的值即為點N縱坐標,進而得到用x1表示的ON的值,同理可求得用x2表示的OM的值,相加再把x1+x2代入即求得OM+ON的值.
(3)以點P為圓心,PB長為半徑的⊙P,由于滿足PB=PQ(即點Q在⊙P上)且點Q在直線CD上的點Q有且只有一個,即⊙P與直線CD只有一個公共點,所以直線CD與⊙P相切于點Q.由(1)得點C、D坐標可知直線CD與DE夾角為45°,△PDQ為等腰直角三角形,PD=
2 |
PQ=
2 |
PB.設點P縱坐標為p,用p表示PB和PD的長并列得方程即可求p的值.由于點P在線段DE上,故p的值為負數(shù),舍去正數(shù)解.
(1)∵拋物線y=ax2﹣4ax﹣6與x軸交于A,B兩點,OB=3OA
∴設A(﹣t,0),B(3t,0)(t>0)
∴ 解得:
∴拋物線解析式為y=x2﹣2x﹣6=(x﹣2)2﹣8
∴頂點D的坐標為(2,﹣8)
(2)∵t=2
∴A(﹣2,0)
設拋物線上的點G(x1,x12﹣2x1﹣6),H(x2,x22﹣2x2﹣6)
∵直線y=+n與拋物線交于G,H兩點
∴ 整理得:x2﹣3x﹣12﹣2n=0
∴x1+x2=3
設直線AG解析式為y=kx+b,即N(0,b)(b<0)
∴
①×x1得:﹣2kx1+bx1=0 ③
②×2得:2kx1+2b=x12﹣4x1﹣12 ④
③+④得:(x1+2)b=(x1+2)(x1﹣6)
∵點G與A不重合,即x1+2≠0
∴b=x1﹣6即ON=﹣b=6﹣x1
同理可得:OM=6﹣x2
∴OM+ON=6﹣x2+6﹣x1=12﹣(x1+x2)=12﹣3=9
(3)如圖,過點C作CF⊥DE于點F,以點P為圓心、PB為半徑作圓
∵PB=PQ
∴點Q在⊙P上
∵有且只有一個點Q在⊙P上又在直線CD上
∴⊙P與直線CD相切于點Q
∴PQ⊥CD
由(1)得:B(6,0),C(0,﹣6),D(2,﹣8)
∴CF=2,DF=﹣6﹣(﹣8)=2,即CF=DF
∴∠CDF=45°
∴△DPQ為等腰直角三角形
∴PD=PQ
∴PD2=2PQ2=2PB2
設P(2,p)(﹣8≤p≤0)
∴PD=p+8,PB2=(6﹣2)2+p2=16+p2
∴(p+8)2=16+p2
解得:p1=8﹣4,p2=8+4(舍去)
∴點P坐標為(2,8﹣4)
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在10×10的網格中,有一格點△ABC(說明:頂點都在網格線交點處的三角形叫做格點三角形).
(1)將△ABC先向右平移5個單位,再向上平移2個單位,得到△A'B'C',請直接畫出平移后的△A'B'C';
(2)將△A'B'C'繞點C'順時針旋轉90°,得到△A'B'C',請直接畫出旋轉后的△A'B'C';
(3)在(2)的旋轉過程中,求點A'所經過的路線長(結果保留π).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今年某市為創(chuàng)評“全國文明城市”稱號,周末團市委組織志愿者進行宣傳活動.班主任梁老師決定從4名女班干部(小悅、小惠、小艷和小倩)中通過抽簽的方式確定2名女生去參加.
抽簽規(guī)則:將4名女班干部姓名分別寫在4張完全相同的卡片正面,把四張卡片背面朝上,洗勻后放在桌面上,梁老師先從中隨機抽取一張卡片,記下姓名,再從剩余的3張卡片中隨機抽取第二張,記下姓名.
(1)該班男生“小剛被抽中”是 事件,“小悅被抽中”是 事件(填“不可能”或“必然”或“隨機”);第一次抽取卡片“小悅被抽中”的概率為 ;
(2)試用畫樹狀圖或列表的方法表示這次抽簽所有可能的結果,并求出“小惠被抽中”的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:關于 x 的方程 2x2+kx﹣1=0.
(1)求證:方程有兩個不相等的實數(shù)根;
(2)若方程的一個根是﹣1,求另一個根及 k 值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在如圖的正方形網格中,每一個小正方形的邊長均為1,已知格點△ABC的頂點A、C的坐標分別是(﹣2,0),(﹣3,3).
(1)請在圖中的網格平面內建立平面直角坐標系.
(2)以點(﹣1,2)為位似中心,相似比為2,將△ABC放大為原來的2倍,得到△A1B1C1,畫出△A1B1C1,使它與△ABC在位似中心的異側,并寫出B1點坐標為 .
(3)線段BC與線段B1C1的關系為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,AB、AC為圓O的弦,連接CO并延長,交AB于點D,且∠ADC=2∠C;
(1)如圖1,求證:AD=CO;
(2)如圖2,取弧BC上一點E,連接EB、EC、ED,且∠EDA=∠ECA,延長EB至點F,連接FD,若∠EDF-∠F=60°,求∠BDF的度數(shù);
(3)如圖3,在(2)的條件下,若CD=10,,求AC的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,,AD平分∠BAC,交BC于點D,點O在AB上,⊙O經過A、D兩點,交AC于點E,交AB于點F.
(1)求證:BC是⊙O的切線;
(2)若⊙O的半徑是2cm,E是弧AD的中點,求陰影部分的面積(結果保留π和根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一項工程,甲,乙兩公司合做,12天可以完成,共需付施工費102000元;如果甲,乙兩公司單獨完成此項工程,乙公司所用時間是甲公司的1.5倍,乙公司每天的施工費比甲公司每天的施工費少1500元.
(1)甲,乙兩公司單獨完成此項工程,各需多少天?
(2)若讓一個公司單獨完成這項工程,哪個公司的施工費較少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,CD是AB邊上的中線,E是CD的中點,過點C作AB的平行線交AE的延長線于點F,連接BF.
(1) 求證:CF=AD;
(2) 若CA=CB,∠ACB=90°,試判斷四邊形CDBF的形狀,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com