某校七年級(jí)學(xué)生到野外活動(dòng),為測(cè)量一池塘兩端A,B的距離,甲、乙、丙三位同學(xué)分別設(shè)計(jì)出如下幾種方案:
甲:如圖①,先在平地取一個(gè)可直接到達(dá)A,B的點(diǎn)C,再連接AC,BC,并分別延長(zhǎng)AC至D,BC至E,使DC=AC,EC=BC,最后測(cè)出DE的長(zhǎng)即為A,B的距離。
乙:如圖②,先過點(diǎn)B作AB的垂線BF,再在BF上取C,D兩點(diǎn),使BC=CD,接著過點(diǎn)D作BD的垂線DE,交AC的延長(zhǎng)線于點(diǎn)E,則測(cè)出DE的長(zhǎng)即為A,B的距離。
丙:如圖③,過點(diǎn)B作BD⊥AB,再由點(diǎn)D觀測(cè),在AB的延長(zhǎng)線上取一點(diǎn)C,使∠BDC=∠BDA,這時(shí)只要測(cè)出BC的長(zhǎng)即為A,B的距離。
(1)以上三位同學(xué)所設(shè)計(jì)的方案,可行的有_______________;
(2)請(qǐng)你選擇一可行的方案,說說它可行的理由。
(1)甲、乙、丙 (2)選甲,可通過證明△ABC≌△DEC(SAS)得AB=ED。
解析試題分析:解:(1)根據(jù)三角形全等的判定方法,可得
甲、乙、丙三位同學(xué)所設(shè)計(jì)的方案可行;
(2)答案不唯一。
選甲:在△ABC和△DEC中
∴△ABC≌△DEC(SAS)。
∴AB=ED。
選乙:∵AB⊥BD,DE⊥BD,
∴∠B=∠CDE=90°
在△ABC和△EDC中
∴△ABC≌△EDC(ASA)
∴AB=ED。
選丙:
∴∠ABD=∠CBD,
在△ABD和△CBD中
∴△ABD≌△CBD(ASA)
∴AB=BC。
考點(diǎn):全等三角形
點(diǎn)評(píng):本題考查全等三角形,解答本題的關(guān)鍵是掌握全等三角形的判定方法,會(huì)證明兩個(gè)三角形全等
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2015屆江西省吉安市七校七年級(jí)下學(xué)期聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題
某校七年級(jí)學(xué)生到野外活動(dòng),為測(cè)量一池塘兩端A,B的距離,甲、乙、丙三位同學(xué)分別設(shè)計(jì)出如下幾種方案:
甲:如圖①,先在平地取一個(gè)可直接到達(dá)A,B的點(diǎn)C,再連接AC,BC,并分別延長(zhǎng)AC至D,BC至E,使DC=AC,EC=BC,最后測(cè)出DE的長(zhǎng)即為A,B的距離。
乙:如圖②,先過點(diǎn)B作AB的垂線BF,再在BF上取C,D兩點(diǎn),使BC=CD,接著過點(diǎn)D作BD的垂線DE,交AC的延長(zhǎng)線于點(diǎn)E,則測(cè)出DE的長(zhǎng)即為A,B的距離。
丙:如圖③,過點(diǎn)B作BD⊥AB,再由點(diǎn)D觀測(cè),在AB的延長(zhǎng)線上取一點(diǎn)C,使∠BDC=∠BDA,這時(shí)只要測(cè)出BC的長(zhǎng)即為A,B的距離。
(1)以上三位同學(xué)所設(shè)計(jì)的方案,可行的有_______________;
(2)請(qǐng)你選擇一可行的方案,說說它可行的理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:不詳 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com