【題目】某公司推出了一種高效環(huán)保型洗滌用品,年初上市后,公司經歷了從虧損到盈利過程.下面的二次函數圖象(部分)刻畫了該公司年初以來累積利潤s(萬元)與銷售時間t(月)之間的關系(即前t個月的利潤總和s和t之間的關系).根據圖象提供的信息,解答下列問題:
(1)由已知圖象上的三點坐標,求累積利潤s(萬元)與時間t(月)之間的函數關系式;
(2)求截止到幾月末公司累積利潤可達到30萬元;
(3)求第8個月公司所獲利潤是多少萬元?
【答案】
(1)解:由圖象可知其頂點坐標為(2,﹣2),
故可設其函數關系式為:S=a(t﹣2)2﹣2. (1)先找到拋物線的頂點坐標,設出拋物線的頂點式,然后用待定系數法即可求出函數解析式;
∵所求函數關系式的圖象過(0,0),
于是得:
a(0﹣2)2﹣2=0,
解得a= .
∴所求函數關系式為:S= (t﹣2)2﹣2,即S= t2﹣2t.
答:累積利潤S與時間t之間的函數關系式為:S= t2﹣2t;
(2)解:把S=30代入S= (t﹣2)2﹣2,
得 (t﹣2)2﹣2=30.
解得t1=10,t2=﹣6(舍去).
答:截止到10月末公司累積利潤可達30萬元.
(3)解:把t=7代入關系式,
得S= ×72﹣2×7=10.5,
把t=8代入關系式,
得S= ×82﹣2×8=16,
16﹣10.5=5.5,
答:第8個月公司所獲利是5.5萬元.
【解析】 (1)先找到拋物線的頂點坐標,設出拋物線的頂點式,然后用待定系數法即可求出函數解析式;
(2)公司利潤為30萬元,即s=30,把s=30代入(1)小題求得的函數解析式即可得出方程求解即可;
(3)把t=7與t=8分別代入函數解析式,算出s的值,算出它們的差即可。
科目:初中數學 來源: 題型:
【題目】早晨,小剛沿著通往學校唯一的一條路(直路)上學,途中發(fā)現(xiàn)忘帶飯盒,停下往家里打電話,媽媽接到電話后帶上飯盒馬上趕往學校,同時小剛返回,兩人相遇后,小剛立即趕往學校,媽媽回家,15分鐘媽媽到家,再經過3分鐘小剛到達學校,小剛始終以100米/分的速度步行,小剛和媽媽的距離y(單位:米)與小剛打完電話后的步行時間t(單位:分)之間的函數關系如圖,下列四種說法:
①打電話時,小剛和媽媽的距離為1250米;
②打完電話后,經過23分鐘小剛到達學校;
③小剛和媽媽相遇后,媽媽回家的速度為150米/分;
④小剛家與學校的距離為2550米.其中正確的個數是( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明同學在一次社會實踐活動中,通過對某種蔬菜在1月份至7月份的市場行情進行統(tǒng)計分析后得出如下規(guī)律: ①該蔬菜的銷售價P(單位:元/千克)與時間x(單位:月份)滿足關系:P=9﹣x
②該蔬菜的平均成本y(單位:元/千克)與時間x(單位:月份)滿足二次函數關系y=ax2+bx+10,已知4月份的平均成本為2元/千克,6月份的平均成本為1元/千克.
(1)求該二次函數的解析式;
(2)請運用小明統(tǒng)計的結論,求出該蔬菜在第幾月份的平均利潤L(單位:元/千克)最大?最大平均利潤是多少?(注:平均利潤=銷售價﹣平均成本)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB、CD為兩個建筑物,建筑物AB的高度為60米,從建筑物AB的頂點A點測得建筑物CD的頂點C點的俯角∠EAC為30°,測得建筑物CD的底部D點的俯角∠EAD為45°.
(1)求兩建筑物底部之間水平距離BD的長度;
(2)求建筑物CD的高度(結果保留根號).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD中,∠A=∠C=90°,BE,DF分別是∠ABC,∠ADC的平分線.
(1)∠1與∠2有什么關系,為什么?
(2)BE與DF有什么關系?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在邊長為6cm的正方形ABCD中,點E、F、G、H分別從點A、B、C、D同時出發(fā),均以1cm/s的速度向點B、C、D、A勻速運動,當點E到達點B時,四個點同時停止運動,在運動過程中,當運動時間為s時,四邊形EFGH的面積最小,其最小值是cm2 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=﹣ x2+bx+c與x軸交于點A和點B,與y軸交于點C,點B坐標為(6,0),點C坐標為(0,6),點D是拋物線的頂點,過點D作x軸的垂線,垂足為E,連接BD.
(Ⅰ)求拋物線的解析式及點D的坐標;
(Ⅱ)點F是拋物線上的動點,當∠FBA=∠BDE時,求點F的坐標;
(Ⅲ)若點M是拋物線上的動點,過點M作MN∥x軸與拋物線交于點N,點P在x軸上,點Q在坐標平面內,以線段MN為對角線作正方形MPNQ,請寫出點Q的坐標.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com