【題目】如圖,射線AN上有一點(diǎn)B,AB5,tanMAN,點(diǎn)C從點(diǎn)A出發(fā)以每秒3個(gè)單位長(zhǎng)度的速度沿射線AN運(yùn)動(dòng),過(guò)點(diǎn)CCDAN交射線AM于點(diǎn)D,在射線CD上取點(diǎn)F,使得CFCB,連結(jié)AF.設(shè)點(diǎn)C的運(yùn)動(dòng)時(shí)間是t(秒)(t0).

1)當(dāng)點(diǎn)C在點(diǎn)B右側(cè)時(shí),求AD、DF的長(zhǎng).(用含t的代數(shù)式表示)

2)連結(jié)BD,設(shè)BCD的面積為S平方單位,求St之間的函數(shù)關(guān)系式.

3)當(dāng)AFD是軸對(duì)稱圖形時(shí),直接寫出t的值.

【答案】(1)AD5t,DF=t+5.(2)當(dāng)0t時(shí),S=﹣6t2+10t.當(dāng)t時(shí),S6t210t.(3t的值為

【解析】

(1)利用勾股定理算出AD,表示出CB,即可表示出DF.

(2)分別討論0t時(shí)和t時(shí),利用面積公式計(jì)算即可.

(3)分別討論當(dāng)DFAD時(shí)的一種情況、當(dāng)AFDF時(shí)的兩種情況.

解:(1)在RtACD中,AC3t,tanMAN,

CD4t

AD

當(dāng)點(diǎn)C在點(diǎn)B右側(cè)時(shí),CB3t5,

CFCB

DF4t﹣(3t5)=t+5

2)當(dāng)0t時(shí),S53t4t=﹣6t2+10t

當(dāng)t時(shí),S3t54t6t210t

3)①如圖1中,當(dāng)DFAD時(shí),ADF是軸對(duì)稱圖形.

則有53t4t5t,解得t,

②如圖2中,當(dāng)AFDF時(shí),ADF是軸對(duì)稱圖形.

FHAD

FADF,

AHDHt,

cosFDH,可得,解得t

③如圖3中,當(dāng)AFDF時(shí),ADF是軸對(duì)稱圖形.

FHAD

FADF

AHDHt,

cosFDH,可得,解得t

綜上所述,滿足條件的t的值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】壓歲錢由來(lái)已久,古稱厭勝錢、壓祟錢等.鐺鐺同學(xué)在2019年春節(jié)共收到10位長(zhǎng)輩給的壓歲錢,分別是:100元、200元、100元、50元、400元、300元、50元、100元、200元、400元.關(guān)于這組數(shù)據(jù),下列說(shuō)法正確的是(

A.中位數(shù)是200B.眾數(shù)是100

C.平均數(shù)是200D.極差是300

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)a,b是任意兩個(gè)不等實(shí)數(shù),我們規(guī)定:滿足不等式a≤x≤b的實(shí)數(shù)x的所有取值的全體叫做閉區(qū)間,表示為[a,b].對(duì)于一個(gè)函數(shù),如果它的自變量x與函數(shù)值y滿足:當(dāng)m≤x≤n時(shí),有m≤y≤n,我們就稱此函數(shù)是閉區(qū)間[m.n]上的“閉函數(shù)”.如函數(shù),當(dāng)x=1時(shí),y=3;當(dāng)x=3時(shí),y=1,即當(dāng)時(shí),有,所以說(shuō)函數(shù)是閉區(qū)間[1,3]上的“閉函數(shù)”.

(1)反比例函數(shù)y=是閉區(qū)間[1,2016]上的“閉函數(shù)”嗎?請(qǐng)判斷并說(shuō)明理由;

(2)若二次函數(shù)y=是閉區(qū)間[1,2]上的“閉函數(shù)”,求k的值;

(3)若一次函數(shù)y=kx+b(k≠0)是閉區(qū)間[m,n]上的“閉函數(shù)”,求此函數(shù)的表達(dá)式(用含m,n的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解:

如圖①,在四邊形ABCD的邊AB上任取一點(diǎn)E(點(diǎn)E不與A、B重合),分別連接ED、EC,可以把四邊形ABCD分成三個(gè)三角形,如果其中有兩個(gè)三角形相似,我們就把E叫做四邊形ABCD的邊AB上的相似點(diǎn);如果這三個(gè)三角形都相似,我們就把E叫做四邊形ABCD的邊AB上的強(qiáng)相似點(diǎn).解決問(wèn)題:

1)如圖①,∠A=∠B=∠DEC45°,試判斷點(diǎn)E是否是四邊形ABCD的邊AB上的相似點(diǎn),并說(shuō)明理由;

2)如圖②,在矩形ABCD中,A、B、CD四點(diǎn)均在正方形網(wǎng)格(網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)為1)的格點(diǎn)(即每個(gè)小正方形的頂點(diǎn))上,試在圖②中畫出矩形ABCD的邊AB上的強(qiáng)相似點(diǎn);

3)如圖③,將矩形ABCD沿CM折疊,使點(diǎn)D落在AB邊上的點(diǎn)E處,若點(diǎn)E恰好是四邊形ABCM的邊AB上的一個(gè)強(qiáng)相似點(diǎn),試確定E點(diǎn)位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,PB與⊙O相切于點(diǎn)B,連接PA交⊙O于點(diǎn)C,連接BC

(1)求證:∠BAC=CBP;

(2)求證:PB2=PCPA;

(3)當(dāng)AC=6,CP=3時(shí),求sinPAB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C90°AC4,BC3,點(diǎn)D是邊AC的中點(diǎn),點(diǎn)E,F在邊AB上,當(dāng)DEF是等腰三角形,且底角的正切值是時(shí),DEF腰長(zhǎng)的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線yax2+bx3x軸于點(diǎn)A(﹣10)和點(diǎn)B3,0),與y軸交于點(diǎn)C,頂點(diǎn)是D,對(duì)稱軸交x軸于點(diǎn)E

1)求拋物線的解析式;

2)點(diǎn)P是拋物線在第四象限內(nèi)的一點(diǎn),過(guò)點(diǎn)PPQy軸,交直線AC于點(diǎn)Q,設(shè)點(diǎn)P的橫坐標(biāo)是m

①求線段PQ的長(zhǎng)度n關(guān)于m的函數(shù)關(guān)系式;

②連接APCP,求當(dāng)ACP面積為時(shí)點(diǎn)P的坐標(biāo);

3)若點(diǎn)N是拋物線對(duì)稱軸上一點(diǎn),則拋物線上是否存在點(diǎn)M,使得以點(diǎn)B,C,M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出線段BN的長(zhǎng)度;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有甲、乙兩種客車,2輛甲種客車與3輛乙種客車的總載客量為180人,1輛甲種客車與2輛乙種客車的總載客量為105人.

1)請(qǐng)問(wèn)1輛甲種客車與1輛乙種客車的載客量分別為多少人?

2)某學(xué)校組織240名師生集體外出活動(dòng),擬租用甲、乙兩種客車共6輛,一次將全部師生送到指定地點(diǎn).若每輛甲種客車的租金為400元,每輛乙種客車的租金為280元,請(qǐng)給出最節(jié)省費(fèi)用的租車方案,并求出最低費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABO的直徑,AC是弦,直線EF經(jīng)過(guò)點(diǎn)CADEF于點(diǎn)D,DAC=BAC.

(1)求證:EFO的切線;

(2)求證:AC2=AD·AB

(3)若O的半徑為2,ACD=300,求圖中陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案