在邊長為1的菱形ABCD中,0°<∠A<90°,設(shè)∠A=α,則菱形的面積S與α的函數(shù)關(guān)系式為


  1. A.
    S=sinα
  2. B.
    S=cosα
  3. C.
    S=tanα
  4. D.
    S=數(shù)學公式
A
分析:根據(jù)菱形的面積=底邊×高,底邊為1,高為sinα,繼而即可選出答案.
解答:過點D作DE⊥AB,如下圖所示:

則DE=AD•sinα=sinα,
∴菱形的面積=AB•DE=1•sinα=sinα.
故選A.
點評:本題考查菱形的性質(zhì),屬于基礎(chǔ)題,比較容易解答,關(guān)鍵是掌握菱形的面積公式.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,在邊長為1的菱形ABCD中,∠B=36°,對角線BD、AC相交于點O,∠BAC的平分線AE交BC邊于點E.試解答下列幾個問題:
(1)不用計算器求:①AE長度的準確值,②∠ABO正弦的準確值;
(2)在對角線BD上取一點M.求BM<AB的概率(如果計算的概率值為無理數(shù),則將計算結(jié)果精確到百分位)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在邊長為6的菱形ABCD中,∠DAB=60°,E為AB的中點,F(xiàn)是AC上的一動點,則EF+BF的最小值為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在邊長為6的菱形ABCD中,動點M從點A出發(fā),沿著折線A→B→C的路線向終點C運動,連接DM交AC于點N,連接BN.
(1)如圖1,當點M在AB邊上運動時.
①求證:△ABN≌△AND;
②若∠ABC=60°,∠ADM=20°,求證:MB=MN.
(2)如圖2,若∠ABC=90°,記點M運動所經(jīng)過的路程為x,求使得△AND為等腰三角形時x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在邊長為8的菱形ABCD中,若∠ABC=60°,
(1)如圖1,E是AB中點,P在DB上運動,求:PA+PE的最小值.
(2)如圖2,DM交AC于點N.若AM=6,∠ABN=α,求點M到AD的距離及tanα的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在邊長為6的菱形ABCD中,動點M從點A出發(fā),沿A?B?C向終點C運動,連接DM交AC于點N.
(1)如圖1,當點M在AB邊上時,連接BN:求證:△ABN≌△ADN;
(2)如圖2,若∠ABC=90°,記點M運動所經(jīng)過的路程為x(6≤x≤12).試問:x為何值時,△ADN為等腰三角形.

查看答案和解析>>

同步練習冊答案