【題目】已知:四邊形ABCD是平行四邊形,點O是對角線AC、BD的交點,EF過點O且與AB、CD分別相交于點E、F,連接EC、AF.
(1)求證:DF=EB;(2)AF與圖中哪條線段平行?請指出,并說明理由.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O是坐標(biāo)原點,過點A(﹣1,0)的拋物線y=x2﹣bx﹣3與x軸的另一個交點為B,與y軸交于點C,其頂點為D點.
(1)求b的值以及點D的坐標(biāo);
(2)連接BC、BD、CD,在x軸上是否存在點P,使得以A、C、P為頂點的三角形與△BCD相似?若存在,求出點P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班級準(zhǔn)備購買一些獎品獎勵春季運動會表現(xiàn)突出的同學(xué),獎品分為甲、乙兩種,已知,購買一個甲獎品比一個乙獎品多用20元,若用400元購買甲獎品的個數(shù)是用160元購買乙獎品個數(shù)的一半.
(1)求購買一個甲獎品和一個乙獎品各需多少元?
(2)經(jīng)商談,商店決定給予該班級每購買甲獎品3個就贈送一個乙獎品的優(yōu)惠,如果該班級需要乙獎品的個數(shù)是甲獎品的2倍還多8個,且該班級購買兩種獎項的總費用不超過640元,那么該班級最多可購買多少個甲獎品?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx﹣2與x軸交于點A、B(點A在點B的左側(cè)),與y軸交于點C(0,﹣2),OB=4OA,tan∠BCO=2.
(1)求A、B兩點的坐標(biāo);
(2)求拋物線的解析式;
(3)點M、N分別是線段BC、AB上的動點,點M從點B出發(fā)以每秒個單位的速度向點C運動,同時點N從點A出發(fā)以每秒2個單位的速度向點B運動,當(dāng)點M、N中的一點到達終點時,兩點同時停止運動.過點M作MP⊥x軸于點E,交拋物線于點P.設(shè)點M、點N的運動時間為t(s),當(dāng)t為多少時,△PNE是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為的內(nèi)接三角形,為的直徑,與相交于點,為的切線,交的延長線于.
(1)求證:;
(2)如圖,若,求證:;
(3)如圖,在(2)的條件下,過點作于點,的延長線交于點,點為的中點,若,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在平面直角坐標(biāo)系xOy中,拋物線L:y=x2-4x+3與x軸交于A,B兩點(點A在點B的左側(cè)),頂點為C.
(1)求點C和點A的坐標(biāo).
(2)定義“L雙拋圖形”:直線x=t將拋物線L分成兩部分,首先去掉其不含頂點的部分,然后作出拋物線剩余部分關(guān)于直線x=t的對稱圖形,得到的整個圖形稱為拋物線L關(guān)于直線x=t的“L雙拋圖形”(特別地,當(dāng)直線x=t恰好是拋物線的對稱軸時,得到的“L雙拋圖形”不變),
①當(dāng)t=0時,拋物線L關(guān)于直找x=0的“L雙拋圖形”如圖所示,直線y=3與“L雙拋圖形”有______個交點;
②若拋物線L關(guān)于直線x=t的“L雙拋圖形”與直線y=3恰好有兩個交點,結(jié)合圖象,直接寫出t的取值范圍:______;
③當(dāng)直線x=t經(jīng)過點A時,“L雙拋圖形”如圖所示,現(xiàn)將線段AC所在直線沿水平(x軸)方向左右平移,交“L雙拋圖形”于點P,交x軸于點Q,滿足PQ=AC時,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2-2x-3與x軸交于A,B兩點,與y軸交于點C,其對稱軸與拋物線相交于點M,與x軸相交于點N,點P是線段MN上的一個動點,連接CP,過點P作PE⊥CP交x軸于點E.
(1)求拋物線的頂點M的坐標(biāo);
(2)當(dāng)點E與原點O的重合時,求點P的坐標(biāo);
(3)求動點E到拋物線對稱軸的最大距離是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ADE繞正方形ABCD的頂點A順時針旋轉(zhuǎn)90°,得△ABF,連接EF交AB于H,則下列結(jié)論: ①AE⊥AF;②EF:AF=:1;③AF2=FHFE;④FB:FC=HB:EC.正確的是___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形OEFG的頂點O與正方形ABCD的中心O重合,若正方形OEFG繞O點旋轉(zhuǎn).
(1)探究:在旋轉(zhuǎn)的過程中線段BE與線段CG有什么數(shù)量關(guān)系及位置關(guān)系?證明你的結(jié)論;
(2)若正方形ABCD的邊長為a,探究:在旋轉(zhuǎn)過程中四邊形OMCN的面積是否發(fā)生變化?若不變化求其面積,若變化指出變化過程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com