【題目】已知,在平面直角坐標(biāo)系xOy中,拋物線Ly=x2-4x+3x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),頂點(diǎn)為C

1)求點(diǎn)C和點(diǎn)A的坐標(biāo).

2)定義“L雙拋圖形”:直線x=t將拋物線L分成兩部分,首先去掉其不含頂點(diǎn)的部分,然后作出拋物線剩余部分關(guān)于直線x=t的對稱圖形,得到的整個(gè)圖形稱為拋物線L關(guān)于直線x=t的“L雙拋圖形”(特別地,當(dāng)直線x=t恰好是拋物線的對稱軸時(shí),得到的“L雙拋圖形”不變),

①當(dāng)t=0時(shí),拋物線L關(guān)于直找x=0的“L雙拋圖形”如圖所示,直線y=3與“L雙拋圖形”有______個(gè)交點(diǎn);

②若拋物線L關(guān)于直線x=t的“L雙拋圖形”與直線y=3恰好有兩個(gè)交點(diǎn),結(jié)合圖象,直接寫出t的取值范圍:______

③當(dāng)直線x=t經(jīng)過點(diǎn)A時(shí),“L雙拋圖形”如圖所示,現(xiàn)將線段AC所在直線沿水平(x軸)方向左右平移,交“L雙拋圖形”于點(diǎn)P,交x軸于點(diǎn)Q,滿足PQ=AC時(shí),求點(diǎn)P的坐標(biāo).

【答案】1C2,-1),A1,0);(2)①3,②0t4,③(+2,1)或(-+2,1)或(-10

【解析】

1)令y=0得:x2-4x+3=0,然后求得方程的解,從而可得到A、B的坐標(biāo),然后再求得拋物線的對稱軸為x=2,最后將x=2代入可求得點(diǎn)C的縱坐標(biāo);

2)①拋物線與y軸交點(diǎn)坐標(biāo)為(0,3),然后做出直線y=3,然后找出交點(diǎn)個(gè)數(shù)即可;②將y=3代入拋物線的解析式求得對應(yīng)的x的值,從而可得到直線y=3“L雙拋圖形恰好有3個(gè)交點(diǎn)時(shí)t的取值,然后結(jié)合函數(shù)圖象可得到“L雙拋圖形與直線y=3恰好有兩個(gè)交點(diǎn)時(shí)t的取值范圍;③首先證明四邊形ACQP為平行四邊形,由可得到點(diǎn)P的縱坐標(biāo)為1,然后由函數(shù)解析式可求得點(diǎn)P的橫坐標(biāo).

1)令y=0得:x2-4x+3=0,解得:x=1x=3

A1,0),B30),

∴拋物線的對稱軸為x=2,

x=2代入拋物線的解析式得:y=-1

C2,-1);

2)①將x=0代入拋物線的解析式得:y=3,

∴拋物線與y軸交點(diǎn)坐標(biāo)為(03),

如圖所示:作直線y=3,

由圖象可知:直線y=3“L雙拋圖形3個(gè)交點(diǎn),

故答案為:3;

②將y=3代入得:x2-4x+3=3,解得:x=0x=4

由函數(shù)圖象可知:當(dāng)0t4時(shí),拋物線L關(guān)于直線x=t“L雙拋圖形與直線y=3恰好有兩個(gè)交點(diǎn),

故答案為:0t4

③如圖2所示:

PQACPQ=AC,

∴四邊形ACQP為平行四邊形,

又∵點(diǎn)C的縱坐標(biāo)為-1,

∴點(diǎn)P的縱坐標(biāo)為1,

y=1代入拋物線的解析式得:x2-4x+3=1,解得:x=+2x=-+2

∴點(diǎn)P的坐標(biāo)為(+2,1)或(-+2,1),

當(dāng)點(diǎn)P-1,0)時(shí),也滿足條件.

綜上所述,滿足條件的點(diǎn)(+2,1)或(-+21)或(-1,0

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程x2+3x+m-1=0的兩個(gè)實(shí)數(shù)根分別為x1,x2

(1)求m的取值范圍.

(2)若2(x1+x2)+ x1x2+10=0.求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A1的坐標(biāo)為(2,0),過點(diǎn)A1x軸的垂線交直線l:y=x于點(diǎn)B1,以原點(diǎn)O為圓心,OB1的長為半徑畫弧交x軸正半軸于點(diǎn)A2;再過點(diǎn)A2x軸的垂線交直線l于點(diǎn)B2,以原點(diǎn)O為圓心,以OB2的長為半徑畫弧交x軸正半軸于點(diǎn)A3;….按此作法進(jìn)行下去,則的長是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在直角中,,點(diǎn)中點(diǎn),連接,點(diǎn)的中點(diǎn),過點(diǎn)交線段的延長線于點(diǎn),連接.

1)求證:四邊形是菱形;

2)在不添加任何輔助線的情況下,請直接寫出與面積相等三角形(不包含

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:四邊形ABCD是平行四邊形,點(diǎn)O是對角線ACBD的交點(diǎn),EF過點(diǎn)O且與ABCD分別相交于點(diǎn)E、F,連接EC、AF

1)求證:DF=EB;(2AF與圖中哪條線段平行?請指出,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某景區(qū)在同一線路上順次有三個(gè)景點(diǎn)A,B,C,甲、乙兩名游客從景點(diǎn)A出發(fā),甲步行到景點(diǎn)C;乙花20分鐘時(shí)間排隊(duì)后乘觀光車先到景點(diǎn)B,在B處停留一段時(shí)間后,再步行到景點(diǎn)C.甲、乙兩人離景點(diǎn)A的路程s(米)關(guān)于時(shí)間t(分鐘)的函數(shù)圖像如圖所示.

(1)甲的速度是 米/分鐘;

(2)當(dāng)20≤t ≤30時(shí),求乙離景點(diǎn)A的路程s與t的函數(shù)表達(dá)式;

(3)乙出發(fā)后多長時(shí)間與甲在途中相遇?

(4)若當(dāng)甲到達(dá)景點(diǎn)C時(shí),乙與景點(diǎn)C的路程為360米,則乙從景點(diǎn)B步行到景點(diǎn)C的速度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC 中,∠ACB90°,AC12,BC5,P 是邊 AB 上的動(dòng)點(diǎn)(不與點(diǎn) B 重合),將BCP 沿 CP 所在的直線翻折,得到BCP,連接 BA,BA 長度的最小值是 m,BA 長度的最大值是 n,則 m+n 的值等于 ______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線11l2,⊙O11l2分別相切于點(diǎn)A和點(diǎn)B.點(diǎn)M和點(diǎn)N分別是l1l2上的動(dòng)點(diǎn),MN沿l1l2平移.⊙O的半徑為1,∠1=60°

1)當(dāng)MN與⊙O相切時(shí),求AM的長;

2)當(dāng)∠MON為多少度時(shí),MN與⊙O相切,并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y1=﹣x1的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,與反比例函數(shù)圖象的一個(gè)交點(diǎn)為M(﹣2,m).

1)求反比例函數(shù)的解析式;

2)當(dāng)y2y1時(shí),求x的取值范圍;

3)求點(diǎn)B到直線OM的距離.

查看答案和解析>>

同步練習(xí)冊答案