設函數(shù)y=-x2-2kx-3k2-4k-5的最大值為M,為使M最大,k=( )
A.-1
B.1
C.-3
D.3
【答案】分析:由于M是最大值,那么M=,即M=-2k2-4k-5,于是求k=-的值即可.
解答:解:∵y=-x2-2kx+(-3k2-4k-5),
∴M==
∴M=-2k2-4k-5,
又∵M最大,
∴k=-=-=-1.
故選A.
點評:本題考查了函數(shù)的最值.注意y最大值=即可.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

21、設函數(shù)y=x2-(m+1)x-4(m+5)的圖象如圖,它與x軸交于A、B兩點,且線段OA與OB的長度之比為1:4,那么m的值為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

設函數(shù)y=x2-(k+1)x-4(k+5)的圖象如圖所示,它與x軸交于A、B兩點,且線段OA與OB的長的比為1:4,則k=
 
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

7、設函數(shù)y=|x2-x|+|x+1|,求-2≤x≤2時,y的最大值和最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AB、CD是半徑為1的⊙P兩條直徑,且∠CPB=120°,⊙M與PC、PB及弧CQB都相切,O、精英家教網(wǎng)Q分別為PB、弧CQB上的切點.
(1)試求⊙M的半徑r;
(2)以AB為x軸,OM為y軸(分別以OB、OM為正方向)建立直角坐標系,
①設直線y=kx+m過點M、Q,求k,m;?????????????????
②設函數(shù)y=x2+bx+c的圖象經(jīng)過點Q、O,求此函數(shù)解析式;
③當y=x2+bx+c<0時,求x的取值范圍;
④若直線y=kx+m與拋物線y=x2+bx+c的另一個交點為E,求線段EQ的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•成都模擬)設函數(shù)y=x2-(2k+1)x+2k-4的圖象如圖所示,它與x軸交于A,B兩點,且線段OA與OB的長度之比為1:3,則k=
1
2
1
2

查看答案和解析>>

同步練習冊答案