19.如圖,在菱形ABCD中,AB=2,∠BAD=60°,過點(diǎn)D作DE⊥AB于點(diǎn)E,DF⊥BC于點(diǎn)F.
(1)如圖1,連接AC分別交DE、DF于點(diǎn)M、N,求證:MN=$\frac{1}{3}$AC;
(2)如圖2,將△EDF以點(diǎn)D為旋轉(zhuǎn)中心旋轉(zhuǎn),其兩邊DE′、DF′分別與直線AB、BC相交于點(diǎn)G、P,連接GP,當(dāng)△DGP的面積等于3$\sqrt{3}$時(shí),求旋轉(zhuǎn)角的大小并指明旋轉(zhuǎn)方向.

分析 (1)連接BD,證明△ABD為等邊三角形,根據(jù)等腰三角形的三線合一得到AE=EB,根據(jù)相似三角形的性質(zhì)解答即可;
(2)分∠EDF順時(shí)針旋轉(zhuǎn)和逆時(shí)針旋轉(zhuǎn)兩種情況,根據(jù)旋轉(zhuǎn)變換的性質(zhì)解答即可.

解答 (1)證明:如圖1,連接BD,交AC于O,
在菱形ABCD中,∠BAD=60°,AD=AB,
∴△ABD為等邊三角形,
∵DE⊥AB,
∴AE=EB,
∵AB∥DC,
∴$\frac{AM}{MC}$=$\frac{AE}{DC}$=$\frac{1}{2}$,
同理,$\frac{CN}{AN}$=$\frac{1}{2}$,
∴MN=$\frac{1}{3}$AC;
(2)解:∵AB∥DC,∠BAD=60°,
∴∠ADC=120°,又∠ADE=∠CDF=30°,
∴∠EDF=60°,
當(dāng)∠EDF順時(shí)針旋轉(zhuǎn)時(shí),
由旋轉(zhuǎn)的性質(zhì)可知,∠EDG=∠FDP,∠GDP=∠EDF=60°,
DE=DF=$\sqrt{3}$,∠DEG=∠DFP=90°,
在△DEG和△DFP中,
$\left\{\begin{array}{l}{∠GDE=∠PDF}\\{∠DEG=∠DFP}\\{DE=DF}\end{array}\right.$,
∴△DEG≌△DFP,
∴DG=DP,
∴△DGP為等邊三角形,
∴△DGP的面積=$\frac{\sqrt{3}}{4}$DG2=3$\sqrt{3}$,
解得,DG=2$\sqrt{3}$,
則cos∠EDG=$\frac{DE}{DG}$=$\frac{1}{2}$,
∴∠EDG=60°,
∴當(dāng)順時(shí)針旋轉(zhuǎn)60°時(shí),△DGP的面積等于3$\sqrt{3}$,
同理可得,當(dāng)逆時(shí)針旋轉(zhuǎn)60°時(shí),△DGP的面積也等于3$\sqrt{3}$,
綜上所述,將△EDF以點(diǎn)D為旋轉(zhuǎn)中心,順時(shí)針或逆時(shí)針旋轉(zhuǎn)60°時(shí),△DGP的面積等于3$\sqrt{3}$.

點(diǎn)評 本題考查的是菱形的性質(zhì)和旋轉(zhuǎn)變換,掌握旋轉(zhuǎn)的性質(zhì):①對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;②對應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;③旋轉(zhuǎn)前、后的圖形全等是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在平面直角坐標(biāo)系中,將一塊腰長為5的等腰直角三角板ABC放在第二象限,且斜靠在兩坐標(biāo)軸上,直角頂點(diǎn)C的坐標(biāo)為(-1,0),點(diǎn)B在拋物線y=ax2+ax-2上.
(1)點(diǎn)A的坐標(biāo)為(0,2),點(diǎn)B的坐標(biāo)為(-3,1);
(2)拋物線的關(guān)系式為y=$\frac{1}{2}$x2+$\frac{1}{2}$x-2;
(3)設(shè)(2)中拋物線的頂點(diǎn)為D,求△DBC的面積;
(4)將三角板ABC繞頂點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)90°,到達(dá)△AB′C的位置.請判斷點(diǎn)B′C′是否在(2)中的拋物線上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.如圖,直線l:y=-3x+3與x軸、y軸分別相交于A、B兩點(diǎn),拋物線y=ax2-2ax+a+4(a<0)經(jīng)過點(diǎn)B.
(1)求該拋物線的函數(shù)表達(dá)式;
(2)已知點(diǎn)M是拋物線上的一個(gè)動點(diǎn),并且點(diǎn)M在第一象限內(nèi),連接AM、BM,設(shè)點(diǎn)M的橫坐標(biāo)為m,△ABM的面積為S,求S與m的函數(shù)表達(dá)式,并求出S的最大值;
(3)在(2)的條件下,當(dāng)S取得最大值時(shí),動點(diǎn)M相應(yīng)的位置記為點(diǎn)M′.
①寫出點(diǎn)M′的坐標(biāo);
②將直線l繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)得到直線l′,當(dāng)直線l′與直線AM′重合時(shí)停止旋轉(zhuǎn),在旋轉(zhuǎn)過程中,直線l′與線段BM′交于點(diǎn)C,設(shè)點(diǎn)B、M′到直線l′的距離分別為d1、d2,當(dāng)d1+d2最大時(shí),求直線l′旋轉(zhuǎn)的角度(即∠BAC的度數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.某校在民族團(tuán)結(jié)宣傳活動中,采用了四種宣傳形式:A唱歌,B舞蹈,C朗誦,D器樂.全校的每名學(xué)生都選擇了一種宣傳形式參與了活動,小明對同學(xué)們選用的宣傳形式,進(jìn)行了隨機(jī)抽樣調(diào)查,根據(jù)調(diào)查統(tǒng)計(jì)結(jié)果,繪制了如圖兩種不完整的統(tǒng)計(jì)圖表:
 選項(xiàng)方式 百分比 
 A 唱歌 35%
 B 舞蹈 a
 C 朗誦 25%
 D 器樂 30%
請結(jié)合統(tǒng)計(jì)圖表,回答下列問題:
(1)本次調(diào)查的學(xué)生共300人,a=10%,并將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)如果該校學(xué)生有2000人,請你估計(jì)該校喜歡“唱歌”這種宣傳形式的學(xué)生約有多少人?
(3)學(xué)校采用調(diào)查方式讓每班在A、B、C、D四種宣傳形式中,隨機(jī)抽取兩種進(jìn)行展示,請用樹狀圖或列表法,求某班抽到的兩種形式恰好是“唱歌”和“舞蹈”的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

14.已知二次函數(shù)y=x2-(2k+1)x+k2+k(k>0)
(1)當(dāng)k=$\frac{1}{2}$時(shí),求這個(gè)二次函數(shù)的頂點(diǎn)坐標(biāo);
(2)求證:關(guān)于x的一元二次方程x2-(2k+1)x+k2+k=0有兩個(gè)不相等的實(shí)數(shù)根;
(3)如圖,該二次函數(shù)與x軸交于A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)的左側(cè)),與y軸交于C點(diǎn),P是y軸負(fù)半軸上一點(diǎn),且OP=1,直線AP交BC于點(diǎn)Q,求證:$\frac{1}{{O{A^2}}}+\frac{1}{{A{B^2}}}=\frac{1}{{A{Q^2}}}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

4.下列說法中正確的是(  )
A.“打開電視,正在播放《新聞聯(lián)播》”是必然事件
B.“x2<0(x是實(shí)數(shù))”是隨機(jī)事件
C.擲一枚質(zhì)地均勻的硬幣10次,可能有5次正面向上
D.為了了解夏季冷飲市場上冰淇淋的質(zhì)量情況,宜采用普查方式調(diào)查

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

11.計(jì)算正確的是(  )
A.(-5)0=0B.x2+x3=x5C.(ab23=a2b5D.2a2•a-1=2a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

8.計(jì)算:($\sqrt{2016}$-3)0-2sin30°-$\sqrt{4}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.計(jì)算:$\sqrt{9}$+|-4|+2sin30°-32

查看答案和解析>>

同步練習(xí)冊答案