【題目】如圖,直線y=x+2與拋物線y=ax2+bx+6(a≠0)相交于A()和B(4,6),點(diǎn)P是線段AB上異于A、B的動(dòng)點(diǎn),過(guò)點(diǎn)P作PC⊥x軸于點(diǎn)D,交拋物線于點(diǎn)C.
(1)求拋物線的解析式;
(2)當(dāng)C為拋物線頂點(diǎn)的時(shí)候,求的面積.
(3)是否存在質(zhì)疑的點(diǎn)P,使的面積有最大值,若存在,求出這個(gè)最大值,若不存在,請(qǐng)說(shuō)明理由.
【答案】(1);(2)(3)存在,(m為點(diǎn)P的橫坐標(biāo))當(dāng)m=時(shí),
【解析】
(1)把A、B坐標(biāo)代入二次函數(shù)解析式,求出a、b,即可求得解析式;
(2)根據(jù)第(1)問(wèn)求出的函數(shù)解析式可得出C點(diǎn)的坐標(biāo),根據(jù)C、P兩點(diǎn)橫坐標(biāo)一樣可得出P點(diǎn)的坐標(biāo),將△BCE的面積分成△PCE與△PCB,以PC為底,即可求出△BCE的面積.
(3)設(shè)動(dòng)點(diǎn)P的坐標(biāo)為(m,m+2),點(diǎn)C的坐標(biāo)為(m,),表示出PC的長(zhǎng)度,根據(jù),構(gòu)造二次函數(shù),然后求出二次函數(shù)的最大值,并求出此時(shí)m的值即可.
解:(1)∵A()和B(4,6)在拋物線y=ax2+bx+6上,
∴
解得:,
∴拋物線的解析式;
(2)∵二次函數(shù)解析式為,
∴頂點(diǎn)C坐標(biāo)為,
∵PC⊥x,點(diǎn)P在直線y=x+2上,
∴點(diǎn)P的坐標(biāo)為,
∴PC=6;
∵點(diǎn)E為直線y=x+2與x軸的交點(diǎn),
∴點(diǎn)E的坐標(biāo)為
∵ =
∴.
(3)存在.
設(shè)動(dòng)點(diǎn)P的坐標(biāo)是,點(diǎn)C的坐標(biāo)為,
∵
∴
∵,
∴函數(shù)開(kāi)口向下,有最大值
∴當(dāng)時(shí),△ABC的面積有最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】年月日貴州環(huán)保行活動(dòng)“美麗烏江 拒絕污染”正式開(kāi)啟,烏江支流由于長(zhǎng)期采磷及磷化工發(fā)展造成了總磷污染.當(dāng)?shù)卣岢鑫鍡l整改措施,力求在天以?xún)?nèi)使總磷含量達(dá)標(biāo)(即總磷濃度低于).整改過(guò)程中,總磷濃度與時(shí)間(天)的變化規(guī)律如圖所示,其中線段表示前天的變化規(guī)律,且線段所在直線的表達(dá)式為:,從第天起,該支流總磷濃度與時(shí)間成反比例關(guān)系.
(1)求整改全過(guò)程中總磷濃度與時(shí)間的函數(shù)表達(dá)式;
(2)該支流中總磷的濃度能否在天以?xún)?nèi)達(dá)標(biāo)?說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以矩形ABCD的邊CD為直徑作⊙O,點(diǎn)E是AB 的中點(diǎn),連接CE交⊙O于點(diǎn)F,連接AF并延長(zhǎng)交BC于點(diǎn)H.
(1)若連接AO,試判斷四邊形AECO的形狀,并說(shuō)明理由;
(2)求證:AH是⊙O的切線;
(3)若AB=6,CH=2,則AH的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線與y=﹣與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,連接AC、BC,點(diǎn)D是線段AB上一點(diǎn),且AD=CA,連接CD.
(1)如圖2,點(diǎn)P是直線BC上方拋物線上的一動(dòng)點(diǎn),在線段BC上有一動(dòng)點(diǎn)Q,連接PC、PD、PQ,當(dāng)△PCD面積最大時(shí),求PQ+CQ的最小值;
(2)將過(guò)點(diǎn)D的直線繞點(diǎn)D旋轉(zhuǎn),設(shè)旋轉(zhuǎn)中的直線l分別與直線AC、直線CO交于點(diǎn)M、N,當(dāng)△CMN為等腰三角形時(shí),直接寫(xiě)出CM的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某水果批發(fā)商銷(xiāo)售每箱進(jìn)價(jià)為40元的柑橘,物價(jià)部門(mén)規(guī)定每箱售價(jià)不得高于55元;市場(chǎng)調(diào)查發(fā)現(xiàn),若每箱以45元的價(jià)格銷(xiāo)售,平均每天銷(xiāo)售105箱;每箱以50元的價(jià)格銷(xiāo)售,平均每天銷(xiāo)售90箱.假定每天銷(xiāo)售量y(箱)與銷(xiāo)售價(jià)x(元/箱)之間滿(mǎn)足一次函數(shù)關(guān)系式.
(1)求平均每天銷(xiāo)售量y(箱)與銷(xiāo)售價(jià)x(元/箱)之間的函數(shù)關(guān)系式;
(2)求該批發(fā)商平均每天的銷(xiāo)售利潤(rùn)w(元)與銷(xiāo)售價(jià)x(元/箱)之間的函數(shù)關(guān)系式;
(3)當(dāng)每箱蘋(píng)果的銷(xiāo)售價(jià)為多少元時(shí),可以獲得最大利潤(rùn)?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD外側(cè),作等邊三角形ADE,AC,BE相交于點(diǎn)F,則∠BFC為( )
A. 75°B. 60°C. 55°D. 45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,已知AB=2,點(diǎn)E是BC邊的中點(diǎn),連接AE,△AB′E和△ABE關(guān)于AE所在直線對(duì)稱(chēng),若△B′CD是直角三角形,則BC邊的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖AB、CD是⊙O的弦,AB⊥CD,
(1)若∠ADC=20°,求∠BOD的度數(shù);
(2)若∠ADC=α,求∠AOC+∠BOD.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com