【題目】如圖,已知點(diǎn)D、E分別在ACD的邊ABAC上,已知DEBC,DEDB

(1)請用直尺和圓規(guī)在圖中畫出點(diǎn)D和點(diǎn)E(保留作圖痕跡,不要求寫作法),并證明所作的線段DE是符合題目要求的;

(2)若AB=7,BC=3,請求出DE的長.

【答案】(1)作圖見解析;(2)2.1.

【解析】試題分析:(1) ①作∠CBA的平分線交AC于點(diǎn)E ;②作BE的垂直平分線交AB于點(diǎn)D.由線段垂直平分線的性質(zhì)和角平分線的性質(zhì)即可得到∠DEB=∠CBE,從而得到結(jié)論;

2)由DEBC得到△ADE∽△ABC,再由相似三角形對應(yīng)邊成比例即可得到結(jié)論

試題解析:(1)如圖

BE平分∠ABC,∴∠CBE=∠ABE.∵DMBE的垂直平分線,∴DE=DB,∴∠DEB=∠DBE,∴∠DEB=∠CBE,∴DEBC,DE=DB

(2) DEBC,∴△ADE∽△ABC,∴ADAB=DEBC,∴(7DB):7=DE3,∴(7DE):7=DE3,解得: DE2.1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:,點(diǎn)AB分別在射線OM、ON(A、B均不與重合),以AB為邊在∠MON的內(nèi)部作等邊三角形ABC,連接OC.

1)如圖1,當(dāng)OA=OB時,求證:平分.

2)如圖2,當(dāng)OAOB時,過點(diǎn)CCDOM,CEON,垂足分別為DE.求證:OD=OE.(注:四邊形的內(nèi)角和為)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一節(jié)數(shù)學(xué)活動課上,王老師將本班學(xué)生身高數(shù)據(jù)(精確到1厘米)出示給大家,要求同學(xué)們各自獨(dú)立繪制一幅頻數(shù)分布直方圖,甲繪制的如圖①所示,乙繪制的如圖②所示,經(jīng)王老師批改,甲繪制的圖是正確的,乙在數(shù)據(jù)整理與繪圖過程中均有個別錯誤.

(1)寫出乙同學(xué)在數(shù)據(jù)整理或繪圖過程中的錯誤(寫出一個即可);

(2)甲同學(xué)在數(shù)據(jù)整理后若用扇形統(tǒng)計(jì)圖表示,則159.5﹣164.5這一部分所對應(yīng)的扇形圓心角的度數(shù)為   

(3)該班學(xué)生的身高數(shù)據(jù)的中位數(shù)是   ;

(4)假設(shè)身高在169.5﹣174.5范圍的5名同學(xué)中,有2名女同學(xué),班主任老師想在這5名同學(xué)中選出2名同學(xué)作為本班的正、副旗手,那么恰好選中一名男同學(xué)和一名女同學(xué)當(dāng)正,副旗手的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在東西方向的海岸線l上有一長為1km的碼頭MN(如圖),在碼頭西端M的正西19.5km處有一觀察站A.某時刻測得一艘勻速直線航行的輪船位于A的北偏西30°,且與A相距40kmB處;經(jīng)過1小時20分鐘,又測得該輪船位于A的北偏東60°,且與A相距kmC處.

(1)求該輪船航行的速度(保留精確結(jié)果);

(2)如果該輪船不改變航向繼續(xù)航行,那么輪船能否正好行至碼頭MN靠岸?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校為了解全校1600名學(xué)生到校上學(xué)的方式,在全校隨機(jī)抽取了若干名學(xué)生進(jìn)行問卷調(diào)查.問卷給出了五種上學(xué)方式供學(xué)生選擇,每人只能選一項(xiàng),且不能不選.將調(diào)查得到的結(jié)果繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計(jì)圖(均不完整).

(1)問:在這次調(diào)查中,一共抽取了多少名學(xué)生?

(2)補(bǔ)全頻數(shù)分布直方圖;

(3)估計(jì)全校所有學(xué)生中有多少人乘坐公交車上學(xué).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)C是線段AB上一點(diǎn),在線段AB的同側(cè)作CADCBE,直線BDAE相交于點(diǎn)F,CA=CDCB=CE,∠ACD=BCE。

1)如圖①,若∠ACD=600,則∠AFB=___________;若∠ACD=,則∠AFB=___________。

2)如圖②,將圖①中的CAD繞點(diǎn)C順時針旋轉(zhuǎn)任意角度(交點(diǎn)F至少在BD、AE中的一條線段上),試探究∠AFB的數(shù)量關(guān)系,并說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某條公共汽車線路收支差額與乘客量的函數(shù)關(guān)系如圖所示(收支差額車票收入支出費(fèi)用),由于目前本條線路虧損,公司有關(guān)人員提出了兩條建議:建議(Ⅰ)不改變支出費(fèi)用,提高車票價格;建議(Ⅱ)不改變車票價格,減少支出費(fèi)用. 下面給出的四個圖形中,實(shí)線和虛線分別表示目前和建議后的函數(shù)關(guān)系,則( )

A. ①反映了建議(Ⅰ),③反映了建議(Ⅱ) B. ②反映了建議(Ⅰ),④反映了建議(Ⅱ)

C. ①反映了建議(Ⅱ),③反映了建議(Ⅰ) D. ②反映了建議(Ⅱ),④反映了建議(Ⅰ)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)F在正方形ABCD的邊BC上,EAB的延長線上,FBEBAF的延長線交CEG,則∠AGC的度數(shù)是___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC的三邊AB、BC、CA長分別為3040、50.其三條角平分線交于點(diǎn)O,則SABO SBCO SCAO =______ 。

查看答案和解析>>

同步練習(xí)冊答案