【題目】在矩形ABCD中,AB5 cmBC6 cm,點P從點A開始沿AB向終點B1 cm/s的速度移動,與此同時,點Q從點B開始沿邊BC向終點C2 cm/s的速度移動,如果P、Q分別從AB同時出發(fā),當點Q運動到點C時,兩點停止運動,設運動時間為t秒.

(1)填空:BQ________,PB________(用含t的代數(shù)式表示)

(2)t為何值時,PQ的長度等于cm?

(3)是否存在t的值,使得五邊形APQCD的面積等于26 cm2?若存在,請求出此時t的值;若不存在,請說明理由.

【答案】12t cm(5t)cm;(2)當t3秒時,PQ的長度等于cm;(3)存在,當t1秒時,五邊形APQCD的面積等于26 cm2,理由見解析.

【解析】

1)根據(jù)P、Q兩點的運動速度可得BQ、PB的長度;

2)根據(jù)勾股定理可得PB2+BQ2QP2,代入相應數(shù)據(jù)解方程即可;

3)根據(jù)題意可得△PBQ的面積為長方形ABCD的面積減去五邊形APQCD的面積,再根據(jù)三角形的面積公式代入相應線段的長即可得到方程,再解方程即可.

解:(1) ∵P從點A開始沿邊AB向終點B1cm/s的速度移動,

∴APtcm

∵AB5cm,

∴PB(5t)cm

Q從點B開始沿邊BC向終點C2cm/s的速度移動,

∴BQ2tcm,

故答案為:2t cm (5t)cm ;

 (2)由題意得:(5t)2(2t)2()2,

解得t1-1(不合題意,舍去)t23

t3秒時,PQ的長度等于cm. 

(3)存在. 理由如下:

長方形ABCD的面積是:5×630(cm2),

使得五邊形APQCD的面積等于26 cm2,

△PBQ的面積為30264(cm2),

(5t) ×2t×4,

解得t14(不合題意,舍去),t21

即當t1秒時,使得五邊形APQCD的面積等于26 cm2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O的直徑AB5,弦AC3,∠ACB的平分線交⊙O于點D

1)求BC的長;

2)求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下圖是一個橫斷面為拋物線形狀的拱橋,當水面寬4 m,拱頂(拱橋洞的最高點)離水面2 m,當水面下降1 m,水面的寬度為_____m.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,△ABC中,AB=AC,點DBA的延長線上,點EBC上,DE=DC,點FDEAC的交點,且DF=FE

1)圖1中是否存在與∠BDE相等的角?若存在,請找出,并加以證明,若不存在,說明理由;

2)求證:BE=EC;

3)若將DBA的延長線上,點EBCFDEAC的交點,且DF=FE”分別改為DAB上,點ECB的延長線上FED的延長線與AC的交點,且DF=kFE”,其他條件不變(如圖2).當AB=1,∠ABC=a時,求BE的長(用含ka的式子表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點直徑上的一點,過作直線,分別交,兩點,連接,并將線段繞點逆時針旋轉得到,連接,分別交,連接

(Ⅰ)求證:;

(Ⅱ)若點在直徑上運動(不與點,重合),其它條件不變,請問是否為定值?若是,請求出其值;若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校有3000名學生.為了解全校學生的上學方式,該校數(shù)學興趣小組以問卷調(diào)查的形式,隨機調(diào)查了該校部分學生的主要上學方式(參與問卷調(diào)查的學生只能從以下六個種類中選擇一類),并將調(diào)查結果繪制成如下不完整的統(tǒng)計圖.

種類

A

B

C

D

E

F

上學方式

電動車

私家車

公共交通

自行車

步行

其他

某校部分學生主要上學方式扇形統(tǒng)計圖某校部分學生主要上學方式條形統(tǒng)計圖

根據(jù)以上信息,回答下列問題:

(1)參與本次問卷調(diào)查的學生共有____人,其中選擇B類的人數(shù)有____人.

(2)在扇形統(tǒng)計圖中,求E類對應的扇形圓心角α的度數(shù),并補全條形統(tǒng)計圖.

(3)若將A、C、D、E這四類上學方式視為綠色出行,請估計該校每天綠色出行的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若二次函數(shù)y=|a|x2+bx+c的圖象經(jīng)過A(m,n)、B(0,y1)、C(3m,n)、D(, y2)、E(2,y3),則y1、y2、y3的大小關系是( ).

A. y1< y2< y3B. y1 < y3< y2C. y3< y2< y1D. y2< y3< y1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,為了測量一座大橋的長度,在一架水平飛行的無人機AB的尾端A點測得橋頭P點的俯角α=74°,前端B點測得橋尾Q點的俯角=30°,此時無人機的飛行高度AC=868米,AB=1米.求這座大橋PQ的長度(結果保留整數(shù))(參考數(shù)據(jù):sin74°≈0.9,cos74°≈0.3,tan74°≈3.5≈1.7,≈1.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】給出如下規(guī)定:對于平面直角坐標系xOy中的圖形MN,給出如下定義:P為圖形M上任意一點,QN上任一點,如果PQ兩點間的距離存在最小值時,就稱該最小值為兩個圖形MN之間的“閉距離”;如果P,Q兩點間的距離存在最大值時,就稱該最大值為兩個圖形MN之間的“開距離”.

請你在學習,理解上述定義的基礎上,解決下面問題:

在平面直角坐標系xOy中,點A(﹣6,8),B(﹣6,﹣8),C6,﹣8),D68).

1)請在平面直角坐標系中畫出四邊形ABCD,線段AB和線段CD的“閉距離”為   ;“開距離”為   ;

2)設直線y=﹣x+bb0)與x軸,y軸分別交于點E,F,若線段EF與四邊形ABCD的“閉距離”是2,求它們的“開距離”;

3M的圓心為Mm,﹣6),半徑為1,若M與△ABC的“閉距離”等于1,直接寫出m的取值范圍.

查看答案和解析>>

同步練習冊答案