【題目】二次函數(shù)=++的頂點(diǎn)M是直線=-和直線=+的交點(diǎn).
(1)若直線=+過(guò)點(diǎn)D(0,-3),求M點(diǎn)的坐標(biāo)及二次函數(shù)=++的解析式;
(2)試證明無(wú)論取任何值,二次函數(shù)=++的圖象與直線=+總有兩個(gè)不同的交點(diǎn);
(3)在(1)的條件下,若二次函數(shù)=++的圖象與軸交于點(diǎn)C,與的右交點(diǎn)為A,試在直線=-上求異于M的點(diǎn)P,使P在△CMA的外接圓上.
【答案】(1)M點(diǎn)坐標(biāo)為M(2,-1),二次函數(shù)=++的解析式為: =-4+3;
(2)證明見(jiàn)解析;
(3)P(-, )
【解析】(本小題滿分14分)
解:(1)把D(0,-3)坐標(biāo)代入直線=+中,
得=-3,從而得直線=-3.……………………………………………1分
由M為直線=-與直線=-3的交點(diǎn),
得,………………………………………………………………………2分
解得,∴得M點(diǎn)坐標(biāo)為M(2,-1).…………………………………3分
∵M為二次函數(shù)=++的頂點(diǎn),∴其對(duì)稱軸為=2,
由對(duì)稱軸公式: =-,得-=2,∴=-4;
由=-1,得=-1,得=3.
∴二次函數(shù)=++的解析式為: =-4+3;………………4分
[也可用頂點(diǎn)式求得解析式:由M(2,-1),
得=-1,展開(kāi)得=-4+3]
(2)∵M是直線=-和=+的交點(diǎn),得,
解得,∴得M點(diǎn)坐標(biāo)為M(-, ).…………………………1分
從而有-=-和=,
解得=; =+.…………………………………………………3分
由,得+(-1)+-=0,……………………4分
該一元二次方程根的判別式
⊿=(-1)2-4(-)
=(-1)2-4(+-)=1>0,…………………………5分
∴二次函數(shù)=++的圖象與直線=+總有兩個(gè)不同的交點(diǎn);
(3)解法①:
由(1)知,二次函數(shù)的解析式為: =-4+3,
當(dāng)=0時(shí), =3.∴點(diǎn)C的坐標(biāo)為C(0,3).……………………………1分
令=0,即-4+3=0,解得=1, =3,
∴點(diǎn)A的坐標(biāo)為A(3,0).………………………………………………………2分
由勾股定理,得AC=3.∵M點(diǎn)的坐標(biāo)為M(2,-1),
過(guò)M點(diǎn)作軸的垂線,垂足的坐標(biāo)應(yīng)為(2,0),由勾股定理,
得AM=;過(guò)M點(diǎn)作軸的垂線,垂足的坐標(biāo)應(yīng)為(0,-1),
由勾股定理,得CM===2.
∵AC2+AM2=20=CM2,∴△CMA是直角三角形,……………………3分
CM為斜邊,∠CAM=90°.
直線=-與△CMA的外接圓的一個(gè)交點(diǎn)為M,另一個(gè)交點(diǎn)為P,
則∠CPM=90°.即△CPM為Rt△.………………………………………4分
設(shè)P點(diǎn)的橫坐標(biāo)為,則P(,- ).過(guò)點(diǎn)P作軸垂線,
過(guò)點(diǎn)M作軸垂線,兩條垂線交于點(diǎn)E(如圖4),則E(,-1).
過(guò)P作PF⊥軸于點(diǎn)F,則F(0,- ).
在Rt△PEM中,PM2=PE2+EM2
=(-+1)2+(2-)2=-5+5.
在Rt△PCF中,PC2=PF2+CF2=+(3+)2
=+3+9.在Rt△PCM中,PC2+PM2=CM2,
得+3+9+-5+5=20,
化簡(jiǎn)整理得5-4-12=0,解得=2, =-.
當(dāng)=2時(shí), =-1,即為M點(diǎn)的橫、縱坐標(biāo).
∴P點(diǎn)的橫坐標(biāo)為-,縱坐標(biāo)為.
∴P(-, ).……………………………………………………………………5分
解法②[運(yùn)用現(xiàn)行高中基本知識(shí)(解析幾何):線段中點(diǎn)公式及兩點(diǎn)間距離公式]:
設(shè)線段CM的中點(diǎn)(即△CMA內(nèi)接圓的圓心)為H,則由線段中點(diǎn)公式,可求出H的坐標(biāo)為H(1,1).∵點(diǎn)P在⊙H上,∴點(diǎn)P到圓心H的距離等于半徑.
設(shè)點(diǎn)P的坐標(biāo)為:P(,- ),由兩點(diǎn)間的距離公式,得PH的長(zhǎng)度為:
,從而有: =,即
=5,化簡(jiǎn),整理,得化簡(jiǎn)整理得5-4-12=0,解得=2, =-.當(dāng)=2時(shí), =-1,即為M點(diǎn)的橫、縱坐標(biāo).
∴P點(diǎn)的橫坐標(biāo)為-,縱坐標(biāo)為.
∴P(-, ).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩個(gè)正數(shù)a,b,可按規(guī)則c=ab+a+b擴(kuò)充為一個(gè)新數(shù)c,在a,b,c三個(gè)數(shù)中取兩個(gè)較大的數(shù),按上述規(guī)則擴(kuò)充得到一個(gè)新數(shù),依次下去,將每擴(kuò)充一次得到一個(gè)新數(shù)稱為一次操作。
(1)若a=1,b=3,按上述規(guī)則操作3次,擴(kuò)充所得的數(shù)是__________;
(2)若p>q>0,經(jīng)過(guò)3次操作后擴(kuò)充所得的數(shù)為(m,n為正整數(shù)),則m,n的值分別為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,D為BC邊上的點(diǎn),∠CAD=∠CDA,E為AB邊的中點(diǎn).
(1)尺規(guī)作圖:作∠C的平分線CF,交AD于點(diǎn)F(保留作圖痕跡,不寫作法);
(2)連結(jié)EF,EF與BC是什么位置關(guān)系?為什么?
(3)若四邊形BDFE的面積為9,求△ABD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某文藝團(tuán)體為“希望工程”募捐組織了一場(chǎng)義演,共售出1000張票,籌出票款6920元,且每張成人票8元,學(xué)生票5元.
(1)問(wèn)成人票與學(xué)生票各售出多少?gòu)垼?/span>
(2)若票價(jià)不變,仍售出1000張票,所得的票款可能是7290元嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,直線AB、CD相交于點(diǎn)O,且∠BOC=80°,OE平分∠BOC.OF為OE的反向延長(zhǎng)線.求∠2和∠3的度數(shù),并說(shuō)明OF是否為∠AOD的平分線.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com