【題目】?jī)蓚(gè)全等的三角尺重疊放在△ACB的位置,將其中一個(gè)三角尺繞著點(diǎn)C按逆時(shí)針方向旋轉(zhuǎn)至△DCE的位置,使點(diǎn)A恰好落在邊DE上,AB與CE相交于點(diǎn)F.已知∠ACB=∠DCE=90°,∠B=30°,AB=8cm,則CF=cm.
【答案】2
【解析】解:∵將其中一個(gè)三角尺繞著點(diǎn)C按逆時(shí)針方向旋轉(zhuǎn)至△DCE的位置,使點(diǎn)A恰好落在邊DE上, ∴DC=AC,∠D=∠CAB,
∴∠D=∠DAC,
∵∠ACB=∠DCE=90°,∠B=30°,
∴∠D=∠CAB=60°,
∴∠DCA=60°,
∴∠ACF=30°,
可得∠AFC=90°,
∵AB=8cm,∴AC=4cm,
∴FC=4cos30°=2 (cm).
故答案為:2 .
利用旋轉(zhuǎn)的性質(zhì)得出DC=AC,∠D=∠CAB,再利用已知角度得出∠AFC=90°,再利用直角三角形的性質(zhì)得出FC的長(zhǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,矩形ABCD的兩條對(duì)角線相交于O,∠AOD=120°,AB=4cm,求矩形對(duì)角線的長(zhǎng)和矩形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各組中的四條線段成比例的是( )
A.a=1,b=3,c=2,d=4
B.a=4,b=6,c=5,d=10
C.a=2,b=4,c=3,d=6
D.a=2,b=3,c=4,d=1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)點(diǎn)從數(shù)軸上的原點(diǎn)開始,先向右移動(dòng)3個(gè)單位,再向左移動(dòng)7個(gè)單位長(zhǎng)度,這時(shí)點(diǎn)所對(duì)應(yīng)的數(shù)是( )
A.3
B.1
C.﹣2
D.﹣4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線y=﹣ x+3和x軸、y軸的交點(diǎn)分別為B、C,點(diǎn)A的坐標(biāo)是(﹣ ,0),另一條直線經(jīng)過點(diǎn)A、C.
(1)求線段AC所對(duì)應(yīng)的函數(shù)表達(dá)式;
(2)動(dòng)點(diǎn)M從B出發(fā)沿BC運(yùn)動(dòng),速度為1秒一個(gè)單位長(zhǎng)度.當(dāng)點(diǎn)M運(yùn)動(dòng)到C點(diǎn)時(shí)停止運(yùn)動(dòng).設(shè)M運(yùn)動(dòng)t秒時(shí),△ABM的面積為S.
①求S與t的函數(shù)關(guān)系式;
②當(dāng)t為何值時(shí),S= S△ABC , (注:S△ABC表示△ABC的面積),求出對(duì)應(yīng)的t值;
③當(dāng)t=4的時(shí)候,在坐標(biāo)軸上是否存在點(diǎn)P,使得△BMP是以BM為直角邊的直角三角形?若存在,請(qǐng)直接寫出P點(diǎn)坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說法正確的是( )
A. 線段可以比較長(zhǎng)短B. 射線可以比較長(zhǎng)短
C. 直線可以比較長(zhǎng)短D. 直線比射線長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某組7名同學(xué)在一學(xué)期里閱讀課外書籍的冊(cè)數(shù)分別是:14,12,13,12,17,18,16.則這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是( )
A. 12,13 B. 12,14 C. 13,14 D. 13,16
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com