【題目】如圖,正方形ABCD中,點(diǎn)E為對(duì)角線AC上一點(diǎn),且AECB,連接DE并延長(zhǎng)交BC于點(diǎn)G,過點(diǎn)A作AH⊥BE于點(diǎn)H,交BC于點(diǎn)F.以下結(jié)論:①BHHE;②∠BEG45°;③△ABF ≌△DCG; ④4BH2BG·CD.其中正確結(jié)論的個(gè)數(shù)是( )
A.1個(gè)B.2
C.3D.4
【答案】D
【解析】
利用正方形的性質(zhì)得到AB=BC=AE,由此得到判斷①正確;先求出∠BAC=∠DAC=45°,利用等腰三角形的性質(zhì)求出∠AEB=∠AED=,再根據(jù)對(duì)頂角相等及平角求出∠BEG,由此判斷②;根據(jù)等腰三角形的三線合一的性質(zhì)求出∠BAF=,推出∠DGC=∠AFB,即可判斷③;證明△BEG∽△DCE,即可判斷④.
∵四邊形ABCD是正方形,
∴AB=BC,
∵AE=CB,
∴AE=AB,
∵AH⊥BE,
∴BH=HE,即①正確;
∵AC是正方形ABCD的對(duì)角線,
∴∠BAC=∠DAC=45°,
∵AE=AB=AD,
∴∠AEB=∠AED=,
∴∠CEG=∠AED=67.5°,
∴∠BEG=180°-∠AEB-∠CEG=45°,故②正確;
∵AB=AE,AH⊥BE,
∴∠BAF=
∵
∴
∵AD∥BC,
∴∠DGC=∠ADE
∴∠AFB=∠DGC,
又∵AB=DC,∠DCG=
∴△ABF ≌△DCG,故③正確;
∵BC=DC,∠BCE=∠DCE=45°,CE=CE,
∴△BCE≌△DCE,
∴BE=DE,∠CBE=∠CDE,
∵∠BEG=∠DCE=45°,
∴△BEG∽△DCE,
∴
∴,
∵DE=BE=2BH,
∴4BH2BG·CD,故④正確,
故正確的有①②③④,
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】面對(duì)疫情,每個(gè)人都需要積極行動(dòng)起來,做好預(yù)防工作.為此某校開展了“新型冠狀病毒肺炎”防控知識(shí)競(jìng)賽.現(xiàn)從該校五、六年級(jí)中各隨機(jī)抽取10名學(xué)生的競(jìng)賽成績(jī)(百分制)進(jìn)行整理、描述和分析(成績(jī)得分用表示,共分成四組:A.,B.,C.,D.),下面給出了部分信息:
五年級(jí)10名學(xué)生的競(jìng)賽成績(jī)是:99,80,99,86,99,96,90,100,89,82
六年級(jí)10名學(xué)生的競(jìng)賽成績(jī)?cè)?/span>C組中的數(shù)據(jù)是:94,90,94
五、六年級(jí)抽取的學(xué)生競(jìng)賽成績(jī)統(tǒng)計(jì)表
年級(jí) | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 |
五年級(jí) | 92 | 93 | 52 | |
六年級(jí) | 92 | 100 | 50.4 |
是據(jù)以上信息,解答下列問題:
(1)直接寫出上述圖表中,,的值:__________,___________,___________;
(2)由以上數(shù)據(jù),你認(rèn)為該校五、六年級(jí)中哪個(gè)年級(jí)學(xué)生掌握防溺水安全知識(shí)較好?請(qǐng)說明理由(一條理由即可);
(3)該校五、六年級(jí)共1800人參加了此次競(jìng)賽活動(dòng),估計(jì)參加此次競(jìng)賽活動(dòng)成績(jī)優(yōu)秀的學(xué)生人數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】受“新冠”疫情的影響,某銷售商在網(wǎng)上銷售、兩種型號(hào)的“手寫板”,獲利頗豐.已知型,型手寫板進(jìn)價(jià)、售價(jià)和每日銷量如表格所示:
進(jìn)價(jià)(元/個(gè)) | 售價(jià)(元/個(gè)) | 銷量(個(gè)/日) | |
型 | |||
型 |
根據(jù)市場(chǎng)行情,該銷售商對(duì)型手寫板降價(jià)銷售,同時(shí)對(duì)型手寫板提高售價(jià),此時(shí)發(fā)現(xiàn)型手寫板每降低元就可多賣個(gè),型手寫板每提高元就少賣個(gè),要保持每天銷售總量不變,設(shè)其中型手寫板每天多銷售個(gè),每天總獲利的利潤(rùn)為元
(1)求與之間的函數(shù)關(guān)系式并寫出的取值范圍;
(2)要使每天的利潤(rùn)不低于元,直接寫出的取值范圍;
(3)該銷售商決定每銷售一個(gè)型手寫板,就捐元給因“新冠疫情”影響的困難家庭,當(dāng)時(shí),每天的最大利潤(rùn)為元,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,正方形ABCD的對(duì)角線AC,BD交于點(diǎn)O,將△COD繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)得到△EOF(旋轉(zhuǎn)角為銳角),連AE,BF,DF,則AE=BF.
(1)如圖2,若(1)中的正方形為矩形,其他條件不變.
①探究AE與BF的數(shù)量關(guān)系,并證明你的結(jié)論;
②若BD=7,AE=,求DF的長(zhǎng);
(2)如圖3,若(1)中的正方形為平行四邊形,其他條件不變,且BD=10,AC=6,AE=5,請(qǐng)直接寫出DF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為提升學(xué)生的藝術(shù)素養(yǎng),學(xué)校計(jì)劃開設(shè)四門藝術(shù)選修課:A.書法;B.繪畫;C.樂器;D.舞蹈.為了解學(xué)生對(duì)四門功課的喜歡情況,在全校范圍內(nèi)隨機(jī)抽取若干名學(xué)生進(jìn)行問卷調(diào)查(每個(gè)被調(diào)查的學(xué)生必須選擇而且只能選擇其中一門).將數(shù)據(jù)進(jìn)行整理,并繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給信息解答下列問題:
(1)本次調(diào)查的學(xué)生共有多少人?扇形統(tǒng)計(jì)圖中∠α的度數(shù)是多少?
(2)請(qǐng)把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)學(xué)校為舉辦2018年度校園文化藝術(shù)節(jié),決定從A.書法;B.繪畫;C.樂器;D.舞蹈四項(xiàng)藝術(shù)形式中選擇其中兩項(xiàng)組成一個(gè)新的節(jié)目形式,請(qǐng)用列表法或樹狀圖求出選中書法與樂器組合在一起的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(m,0),m<0,點(diǎn)B與點(diǎn)A 關(guān)于原點(diǎn)對(duì)稱,直線與雙曲線交于C,D兩點(diǎn).
(1)直接判斷后填空:四邊形ACBD的形狀一定是 ;
(2)若點(diǎn)D(1,t),求雙曲線的解析式;
(3)在(2)的前提下,四邊形ACBD為矩形時(shí),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠BAC=60°,AD平分∠BAC交邊BC于點(diǎn)D,分別過D作DE∥AC交邊AB于點(diǎn)E,DF∥AB交邊AC于點(diǎn)F.
(1)如圖1,試判斷四邊形AEDF的形狀,并說明理由;
(2)如圖2,若AD=4,點(diǎn)H,G分別在線段AE,AF上,且EH=AG=3,連接EG交AD于點(diǎn)M,連接FH交EG于點(diǎn)N.
(i)求ENEG的值;
(ii)將線段DM繞點(diǎn)D順時(shí)針旋轉(zhuǎn)60°得到線段DM′,求證:H,F,M′三點(diǎn)在同一條直線上
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2020賀歲片《囧媽》提檔大年三十網(wǎng)絡(luò)首播.“樂調(diào)查”平臺(tái)為了全面了解觀眾對(duì)《囧媽》的滿意度情況,進(jìn)行隨機(jī)抽樣調(diào)查,分為四個(gè)類別:.非常滿意;.滿意;.基本滿意;.不滿意,依據(jù)調(diào)查數(shù)據(jù)繪制成圖1和圖2的統(tǒng)計(jì)圖(不完整).
根據(jù)以上信息,解答下列問題:
(1)本次接受調(diào)查的觀眾共有_______人;
(2)扇形統(tǒng)計(jì)圖中,扇形的圓心角度數(shù)是_______;
(3)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(4)“樂調(diào)查”平臺(tái)調(diào)查了春節(jié)期間觀看《固媽》的觀眾約5000人,請(qǐng)估計(jì)觀眾對(duì)該電影的滿意(、、類視為滿意)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=BC.CD∥AB,點(diǎn)D在點(diǎn)C的右側(cè),點(diǎn)A,E關(guān)于直線BD對(duì)稱,CE交BD于點(diǎn)F,AE交DB延長(zhǎng)線于點(diǎn)G.
(1)(猜想)
如圖①,當(dāng)∠ABC=90°時(shí),∠EFG=________;
(2)(探究)
在(1)的前提下,若AB=4,CD=1,求EF的長(zhǎng);
(3)(應(yīng)用)
如圖②,當(dāng)∠ABC=120°時(shí),若EF=2 ,AB=2,則CD=________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com