【題目】我們知道對于x軸上的任意兩點A(x1,0),B(x2,0),有AB=|x1﹣x2|,而對于平面直角坐標系中的任意兩點P1(x1,y1),P2(x2,y2),我們把|x1﹣x2|+|y1﹣y2|稱為Pl,P2兩點間的直角距離,記作d(P1,P2),即d(P1,P2)=|x1﹣x2|+|y1﹣y2|.

(1)已知O為坐標原點,若點P坐標為(1,3),則d(O,P)=   

(2)已知O為坐標原點,動點P(x,y)滿足d(O,P)=2,請寫出x與y之間滿足的關(guān)系式,并在所給的直角坐標系中畫出所有符合條件的點P所組成的圖形;

(3)試求點M(2,3)到直線y=x+2的最小直角距離.

【答案】(1)4;(2)圖形見解析;(3)點M(2,3)到直線y=x+2的直角距離為1.

【解析】試題分析:(1)由P0與原點O的坐標,利用題中的新定義計算即可得到結(jié)果;

(2)利用題中的新定義列出x與y的關(guān)系式,畫出相應的圖象即可;

(3)根據(jù)新的運算規(guī)則知d(M,Q)=|x﹣2|+|y﹣3|=|x﹣2|+|x+2﹣3|=|x﹣2|+|x﹣1|,然后由絕對值與數(shù)軸的關(guān)系可知,|x﹣2|+|x﹣1|表示數(shù)軸上實數(shù)x所對應的點到數(shù)2和1所對應的點的距離之和,其最小值為1.

試題解析:(1)d(O,P)=|0﹣1|+|0﹣3|=4;故答案為:4;

(2)∵O為坐標原點,動點P(x,y)滿足d(O,P),

∴|0﹣x|+|0﹣y|=|x|+|y|=2,

所有符合條件的點P組成的圖形如圖所示;

(3)∵d=|x﹣2|+|y﹣3|=|x﹣2|+|x+2﹣3|=|x﹣2|+|x﹣1|

∴x可取一切實數(shù),|x﹣2|+|x﹣1|表示數(shù)軸上實數(shù)x所對應的點到1和2所對應的點的距離之和,其最小值為1.

∴點M(2,3)到直線y=x+2的直角距離為1.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】若代數(shù)式2a2-4b-1的值為3,則a2-2b的值是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】大于-3而小于2的所有整數(shù)的和是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小麗購買學習用品的收據(jù)如表,因污損導致部分數(shù)據(jù)無法識別,根據(jù)下表,解決下列問題:

(1)小麗買了自動鉛筆、記號筆各幾支?

(2)若小麗再次購買軟皮筆記本和自動鉛筆兩種文具,共花費15元,則有哪幾種不同的購買方案?

商品名

單價(元)

數(shù)量(個)

金額(元)

簽字筆

3

2

6

自動鉛筆

1.5

記號筆

4

軟皮筆記本

2

9

圓規(guī)

3.5

1

合計

8

28

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】清明期間,某校師生組成200個小組參加“保護環(huán)境,美化家園”植樹活動.綜合實際情況,校方要求每小組植樹量為2至5棵,活動結(jié)束后,校方隨機抽查了其中50個小組,根據(jù)他們的植樹量繪制出如圖所示的兩幅不完整統(tǒng)計圖.請根據(jù)圖中提供的信息,解答下面的問題:

(1)請把條形統(tǒng)計圖補充完整,并算出扇形統(tǒng)計圖中,植樹量為“5棵樹”的圓心角是   °.

(2)請你幫學校估算此次活動共種多少棵樹.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若代數(shù)式3b-5a的值是2,則代數(shù)式2a-b-4b-2a-3的值等于______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),在平面直角坐標系中,點A、C分別在y軸和x軸上,AB∥x軸,cosB=.點P從B點出發(fā),以1cm/s的速度沿邊BA勻速運動,點Q從點A出發(fā),沿線段AO-OC-CB勻速運動.點P與點Q同時出發(fā),其中一點到達終點,另一點也隨之停止運動.設(shè)點P運動的時間為t(s),△BPQ的面積為S(cm2), 已知S與t之間的函數(shù)關(guān)系如圖(2)中的曲線段OE、線段EF與曲線段FG.

(1)點Q的運動速度為 cm/s,點B的坐標為

(2)求曲線FG段的函數(shù)解析式;

(3)當t為何值時,△BPQ的面積是四邊形OABC的面積的?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中, , 的角平分線,以為圓心, 為半徑作⊙

)求證: 是⊙的切線.

)已知交⊙于點,延長交⊙于點, ,求的值.

)在()的條件下,設(shè)⊙的半徑為,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小麗和小明上山游玩,小麗乘纜車,小明步行,兩人相約在山頂?shù)睦|車終點會合.已知小明行走到纜車終點的路程是纜車到山頂?shù)木路長的2倍,小麗在小明出發(fā)后1小時才乘上纜車,纜車的平均速度為190m/min.設(shè)小明出發(fā)x min后行走的路程為y m.圖中的折線表示小明在整個行走過程中y與x的函數(shù)關(guān)系.

(1)小明行走的總路程是m,他途中休息了min.
(2)①當60≤x≤90時,求y與x的函數(shù)關(guān)系式;②當小麗到達纜車終點時,小明離纜車終點的路程是多少?

查看答案和解析>>

同步練習冊答案