【題目】已知拋物線yax2+bx+c過點(diǎn)A0,3),且拋物線上任意不同兩點(diǎn)Mx1,y1),Nx2y2)都滿足:當(dāng)x1x20時(shí),(x1x2)(y1y2)>0;當(dāng)0x1x2時(shí),(x1x2)(y1y2)<0.以原點(diǎn)O為圓心,OA為半徑的圓與拋物線的另兩個(gè)交點(diǎn)為BC,且BC的左側(cè),ABC有一個(gè)內(nèi)角為60°,則拋物線的解析式為_____

【答案】y=﹣x2+3

【解析】

A的坐標(biāo)確定出c的值,根據(jù)已知不等式判斷出y1y20,可得出拋物線的增減性,確定出拋物線對(duì)稱軸為y軸,且開口向下,求出b的值,如圖所示,可得三角形ABC為等邊三角形,確定出B的坐標(biāo),代入拋物線解析式即可.

解:∵拋物線過點(diǎn)A03),

c3,

當(dāng)x1x20時(shí),x1x20,由(x1x2)(y1y2)>0,得到y1y20

∴當(dāng)x0時(shí),yx的增大而增大,

同理當(dāng)x0時(shí),yx的增大而減小,

∴拋物線的對(duì)稱軸為y軸,且開口向下,即b0

∵以O為圓心,OA為半徑的圓與拋物線交于另兩點(diǎn)B,C,如圖所示,

∴△ABC為等腰三角形,

∵△ABC中有一個(gè)角為60°,

∴△ABC為等邊三角形,且OCOA3,

設(shè)線段BCy軸的交點(diǎn)為點(diǎn)D,則有BDCD,且∠OBD30°,

BDOBcos30°,ODOBsin30°

BC的左側(cè),

B的坐標(biāo)為(,),

B點(diǎn)在拋物線上,且c3,b0

3a+2,

解得:a,

則拋物線解析式為y=﹣x2+3.

故答案為:y=﹣x2+3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)在反比例函數(shù)的圖象上,過點(diǎn)軸,垂足為,直線經(jīng)過點(diǎn),與軸交于點(diǎn),且,.

(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;

(2)直接寫出關(guān)于的不等式的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知矩形ABCD中,AB2,BCm,點(diǎn)E是邊BC上一點(diǎn),BE1,連接AE,沿AE翻折△ABE使點(diǎn)B落在點(diǎn)F處.

1)連接CF,若CFAE,求m的值;

2)連接DF,若DF,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一節(jié)數(shù)學(xué)課后,老師布置了一道課后練習(xí)題:

如圖1,的直徑,點(diǎn)上,,垂足為,,分別交、于點(diǎn)、.求證:.

1 2

1)本題證明的思路可用下列框圖表示:

根據(jù)上述思路,請(qǐng)你完整地書寫本題的證明過程.

2)如圖2,若點(diǎn)和點(diǎn)的兩側(cè),的延長線交于點(diǎn),的延長線交于點(diǎn),其余條件不變,(1)中的結(jié)論還成立嗎?請(qǐng)說明理由;

3)在(2)的條件下,若,,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC內(nèi)接于⊙O,AB=AC,∠BAC=36°,過點(diǎn)A作ADBC,與ABC的平分線交于點(diǎn)D,BD與AC交于點(diǎn)E,與O交于點(diǎn)F.

(1)求DAF的度數(shù);

(2)求證:AE2=EFED;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,拋物線y=﹣x2+4x+m4m為常數(shù))與y軸的交點(diǎn)為C,M3,0)與N0,﹣2)分別是x軸、y軸上的點(diǎn)

1)當(dāng)m1時(shí),求拋物線頂點(diǎn)坐標(biāo).

2)若3x3+m時(shí),函數(shù)y=﹣x2+4x+m4有最小值﹣7,求m的值.

3)若拋物線與線段MN有公共點(diǎn),直接寫出m的取值范圍是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是我市某大樓的高,在地面上點(diǎn)處測(cè)得樓頂的仰角為,沿方向前進(jìn)米到達(dá)點(diǎn),測(cè)得.現(xiàn)打算從大樓頂端點(diǎn)懸掛一幅慶祝建國周年的大型標(biāo)語,若標(biāo)語底端距地面,請(qǐng)你計(jì)算標(biāo)語的長度應(yīng)為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解七、八年級(jí)學(xué)生對(duì)防溺水安全知識(shí)的掌握情況,從七、八年級(jí)各隨機(jī)抽取50名學(xué)生進(jìn)行測(cè)試,并對(duì)成績(百分制)進(jìn)行整理、描述和分析.部分信息如下:

a.七年級(jí)成績頻數(shù)分布直方圖:

b.七年級(jí)成績?cè)?/span>這一組的是:70 72 74 75 76 76 77 77 77 78 79

c.七、八年級(jí)成績的平均數(shù)、中位數(shù)如下:

年級(jí)

平均數(shù)

中位數(shù)

76.9

m

79.2

79.5

根據(jù)以上信息,回答下列問題:

1)在這次測(cè)試中,七年級(jí)在80分以上(含80分)的有   人;

2)表中m的值為   ;

3)在這次測(cè)試中,七年級(jí)學(xué)生甲與八年級(jí)學(xué)生乙的成績都是78分,請(qǐng)判斷兩位學(xué)生在各自年級(jí)的排名誰更靠前,并說明理由;

4)該校七年級(jí)學(xué)生有400人,假設(shè)全部參加此次測(cè)試,請(qǐng)估計(jì)七年級(jí)成績超過平均數(shù)76.9分的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場銷售一種成本為每件元的商品,銷售過程中發(fā)現(xiàn),每月銷售量(件)與銷售單價(jià)(元)之間的關(guān)系可近似看作一次函數(shù).商場銷售該商品每月獲得利潤為(元).

1)求之間的函數(shù)關(guān)系式;

2)如果商場銷售該商品每月想要獲得元的利潤,那么每件商品的銷售單價(jià)應(yīng)為多少元?

3)商場每月要獲得最大的利潤,該商品的銷售單價(jià)應(yīng)為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案