【題目】已知拋物線y=ax2+bx+c過點(diǎn)A(0,3),且拋物線上任意不同兩點(diǎn)M(x1,y1),N(x2,y2)都滿足:當(dāng)x1<x2<0時(shí),(x1﹣x2)(y1﹣y2)>0;當(dāng)0<x1<x2時(shí),(x1﹣x2)(y1﹣y2)<0.以原點(diǎn)O為圓心,OA為半徑的圓與拋物線的另兩個(gè)交點(diǎn)為B,C,且B在C的左側(cè),△ABC有一個(gè)內(nèi)角為60°,則拋物線的解析式為_____.
【答案】y=﹣x2+3
【解析】
由A的坐標(biāo)確定出c的值,根據(jù)已知不等式判斷出y1﹣y2<0,可得出拋物線的增減性,確定出拋物線對(duì)稱軸為y軸,且開口向下,求出b的值,如圖所示,可得三角形ABC為等邊三角形,確定出B的坐標(biāo),代入拋物線解析式即可.
解:∵拋物線過點(diǎn)A(0,3),
∴c=3,
當(dāng)x1<x2<0時(shí),x1﹣x2<0,由(x1﹣x2)(y1﹣y2)>0,得到y1﹣y2<0,
∴當(dāng)x<0時(shí),y隨x的增大而增大,
同理當(dāng)x>0時(shí),y隨x的增大而減小,
∴拋物線的對(duì)稱軸為y軸,且開口向下,即b=0,
∵以O為圓心,OA為半徑的圓與拋物線交于另兩點(diǎn)B,C,如圖所示,
∴△ABC為等腰三角形,
∵△ABC中有一個(gè)角為60°,
∴△ABC為等邊三角形,且OC=OA=3,
設(shè)線段BC與y軸的交點(diǎn)為點(diǎn)D,則有BD=CD,且∠OBD=30°,
∴BD=OBcos30°=,OD=OBsin30°=,
∵B在C的左側(cè),
∴B的坐標(biāo)為(,),
∵B點(diǎn)在拋物線上,且c=3,b=0,
∴3a+2=,
解得:a=,
則拋物線解析式為y=﹣x2+3.
故答案為:y=﹣x2+3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)在反比例函數(shù)的圖象上,過點(diǎn)作軸,垂足為,直線經(jīng)過點(diǎn),與軸交于點(diǎn),且,.
(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;
(2)直接寫出關(guān)于的不等式的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知矩形ABCD中,AB=2,BC=m,點(diǎn)E是邊BC上一點(diǎn),BE=1,連接AE,沿AE翻折△ABE使點(diǎn)B落在點(diǎn)F處.
(1)連接CF,若CF∥AE,求m的值;
(2)連接DF,若≤DF≤,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一節(jié)數(shù)學(xué)課后,老師布置了一道課后練習(xí)題:
如圖1,是的直徑,點(diǎn)在上,,垂足為,,分別交、于點(diǎn)、.求證:.
圖1 圖2
(1)本題證明的思路可用下列框圖表示:
根據(jù)上述思路,請(qǐng)你完整地書寫本題的證明過程.
(2)如圖2,若點(diǎn)和點(diǎn)在的兩側(cè),、的延長線交于點(diǎn),的延長線交于點(diǎn),其余條件不變,(1)中的結(jié)論還成立嗎?請(qǐng)說明理由;
(3)在(2)的條件下,若,,求
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB=AC,∠BAC=36°,過點(diǎn)A作AD∥BC,與∠ABC的平分線交于點(diǎn)D,BD與AC交于點(diǎn)E,與⊙O交于點(diǎn)F.
(1)求∠DAF的度數(shù);
(2)求證:AE2=EFED;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,拋物線y=﹣x2+4x+m﹣4(m為常數(shù))與y軸的交點(diǎn)為C,M(3,0)與N(0,﹣2)分別是x軸、y軸上的點(diǎn)
(1)當(dāng)m=1時(shí),求拋物線頂點(diǎn)坐標(biāo).
(2)若3≤x≤3+m時(shí),函數(shù)y=﹣x2+4x+m﹣4有最小值﹣7,求m的值.
(3)若拋物線與線段MN有公共點(diǎn),直接寫出m的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是我市某大樓的高,在地面上點(diǎn)處測(cè)得樓頂的仰角為,沿方向前進(jìn)米到達(dá)點(diǎn),測(cè)得.現(xiàn)打算從大樓頂端點(diǎn)懸掛一幅慶祝建國周年的大型標(biāo)語,若標(biāo)語底端距地面,請(qǐng)你計(jì)算標(biāo)語的長度應(yīng)為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解七、八年級(jí)學(xué)生對(duì)“防溺水”安全知識(shí)的掌握情況,從七、八年級(jí)各隨機(jī)抽取50名學(xué)生進(jìn)行測(cè)試,并對(duì)成績(百分制)進(jìn)行整理、描述和分析.部分信息如下:
a.七年級(jí)成績頻數(shù)分布直方圖:
b.七年級(jí)成績?cè)?/span>這一組的是:70 72 74 75 76 76 77 77 77 78 79
c.七、八年級(jí)成績的平均數(shù)、中位數(shù)如下:
年級(jí) | 平均數(shù) | 中位數(shù) |
七 | 76.9 | m |
八 | 79.2 | 79.5 |
根據(jù)以上信息,回答下列問題:
(1)在這次測(cè)試中,七年級(jí)在80分以上(含80分)的有 人;
(2)表中m的值為 ;
(3)在這次測(cè)試中,七年級(jí)學(xué)生甲與八年級(jí)學(xué)生乙的成績都是78分,請(qǐng)判斷兩位學(xué)生在各自年級(jí)的排名誰更靠前,并說明理由;
(4)該校七年級(jí)學(xué)生有400人,假設(shè)全部參加此次測(cè)試,請(qǐng)估計(jì)七年級(jí)成績超過平均數(shù)76.9分的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售一種成本為每件元的商品,銷售過程中發(fā)現(xiàn),每月銷售量(件)與銷售單價(jià)(元)之間的關(guān)系可近似看作一次函數(shù).商場銷售該商品每月獲得利潤為(元).
(1)求與之間的函數(shù)關(guān)系式;
(2)如果商場銷售該商品每月想要獲得元的利潤,那么每件商品的銷售單價(jià)應(yīng)為多少元?
(3)商場每月要獲得最大的利潤,該商品的銷售單價(jià)應(yīng)為多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com