【題目】畫拋物線y=x2﹣2x﹣3的草圖,并說出開口方向,對(duì)稱軸,頂點(diǎn)坐標(biāo),增減性,最值.
【答案】見解析
【解析】試題分析:
(1)畫二次函數(shù)圖象,至少要描出5個(gè)點(diǎn),其中頂點(diǎn)坐標(biāo)必取,與坐標(biāo)軸的交點(diǎn),如果有,建議取,所取點(diǎn),盡量在對(duì)稱軸兩邊對(duì)稱選取,否則圖象不對(duì)稱不完整.
(2)a大小決定開口方向,而a=1>0,故開口向上;對(duì)稱軸為直線 ,頂點(diǎn)為即(1,-4); 令x=0,則y=-3,得與y軸交點(diǎn)(0,-3);令y=0,得方程x2﹣2x﹣3=0,解之得 ,得與x軸兩個(gè)交點(diǎn)(3,0),(-1,0).
(3)列表后描點(diǎn),然后用平滑曲線連接各點(diǎn),就得所求作的圖象.
(4)根據(jù)草圖,增減性,最值就一目了然.
解:列表,如下:
x | … | ﹣1 | 0 | 1 | 2 | 3 | … |
y | … | 0 | ﹣3 | ﹣4 | ﹣3 | 0 | … |
描點(diǎn)、連線,如圖所示.
觀察函數(shù)圖象,可知:拋物線開口向上;對(duì)稱軸為直線x=1;頂點(diǎn)坐標(biāo)為(1,﹣4);當(dāng)x<1時(shí),y隨x增大而減小,當(dāng)x>1時(shí),y隨x增大而增大;拋物線y=x2﹣2x﹣3存在最小值,最小值為﹣4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一座橋如圖,橋下水面寬度AB是20米,高CD是4米.要使高為3米的船通過,則其寬度須不超過多少米.
(1)如圖1,若把橋看做是拋物線的一部分,建立如圖坐標(biāo)系.
①求拋物線的解析式;
②要使高為3米的船通過,則其寬度須不超過多少米?
(2)如圖2,若把橋看做是圓的一部分.
①求圓的半徑;
②要使高為3米的船通過,則其寬度須不超過多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=﹣x+5的圖象與反比例函數(shù)(k≠0)在第一象限的圖象交于A(1,n)和B兩點(diǎn).
(1)求反比例函數(shù)的解析式及點(diǎn)B坐標(biāo);
(2)在第一象限內(nèi),當(dāng)一次函數(shù)y=-x+5的值大于反比例函數(shù)(k≠0)的值時(shí),寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小麗想知道自家門前小河的寬度,于是她按以下辦法測(cè)出了如下數(shù)據(jù):小麗在河岸邊選取點(diǎn)A,在點(diǎn)A的對(duì)岸選取一個(gè)參照點(diǎn)C,測(cè)得∠CAD=30°;小麗沿岸向前走30m選取點(diǎn)B,并測(cè)得∠CBD=60°.請(qǐng)根據(jù)以上數(shù)據(jù),用你所學(xué)的數(shù)學(xué)知識(shí),幫小麗計(jì)算小河的寬度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,A(a,0)是x軸正半軸上一點(diǎn),C是第四象限一點(diǎn),CB⊥y軸,交y軸負(fù)半軸于B(0,b),且(a-3)2+|b+4|=0,S四邊形AOBC=16.
(1)求C點(diǎn)坐標(biāo);
(2)如圖2,設(shè)D為線段OB上一動(dòng)點(diǎn),當(dāng)AD⊥AC時(shí),∠ODA的角平分線與∠CAE的角平分線的反向延長(zhǎng)線交于點(diǎn)P,求∠APD的度數(shù).
(3)如圖3,當(dāng)D點(diǎn)在線段OB上運(yùn)動(dòng)時(shí),作DM⊥AD交BC于M點(diǎn),∠BMD、∠DAO的平分線交于N點(diǎn),則D點(diǎn)在運(yùn)動(dòng)過程中,∠N的大小是否變化?若不變,求出其值,若變化,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在Rt△ABC中,AB的垂直平分線交BC于點(diǎn)E.若BE=2,∠B=22.5°.求∠AEC的度數(shù)及AE,AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點(diǎn),BD是對(duì)角線,AG//DB交CB的延長(zhǎng)線于G.
(1)求證:△ADE≌△CBF;
(2)若四邊形BEDF是菱形,求證四邊形AGBD是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A(﹣2,0),點(diǎn)B(0,2),點(diǎn)E,點(diǎn)F分別為OA,OB的中點(diǎn).若正方形OEDF繞點(diǎn)O順時(shí)針旋轉(zhuǎn),得正方形OE′D′F′,記旋轉(zhuǎn)角為α.
(1)如圖①,當(dāng)α=90°時(shí),求AE′,BF′的長(zhǎng);
(2)如圖②,當(dāng)α=135°時(shí),求證AE′=BF′,且AE′⊥BF′;
(3)若直線AE′與直線BF′相交于點(diǎn)P,求點(diǎn)P的縱坐標(biāo)的最大值(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成推理填空:如圖在△ABC中,已知∠1+∠2=180°,∠3=∠B,試說明∠AED=∠C.
解:∵∠1+∠EFD=180°(鄰補(bǔ)角定義),∠1+∠2=180°(已知。
∴ (同角的補(bǔ)角相等)①
∴ (內(nèi)錯(cuò)角相等,兩直線平行)②
∴∠ADE=∠3( )③
∵∠3=∠B( )④
∴ (等量代換)⑤
∴DE∥BC( )⑥
∴∠AED=∠C( )⑦
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com