【題目】如今很多初中生購買飲品飲用,既影響身體健康又給家庭增加不必要的開銷,為此數(shù)學(xué)興趣小組對本班同學(xué)一天飲用飲品的情況進(jìn)行了調(diào)查,大致可分為四種:
A:自帶白開水;B:瓶裝礦泉水;C:碳酸飲料;D:非碳酸飲料.
根據(jù)統(tǒng)計(jì)結(jié)果繪制如下兩個(gè)統(tǒng)計(jì)圖,根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問題:
(1)這個(gè)班級有多少名同學(xué)?并補(bǔ)全條形統(tǒng)計(jì)圖.
(2)若該班同學(xué)沒人每天只飲用一種飲品(每種僅限1瓶,價(jià)格如下表),則該班同學(xué)用于飲品上的人均花費(fèi)是多少元?
(3)若我市約有初中生4萬人,估計(jì)我市初中生每天用于飲品上的花費(fèi)是多少元?
(4)為了養(yǎng)成良好的生活習(xí)慣,班主任決定在自帶白開水的5名同學(xué)(男生2人,女生3人)中隨機(jī)抽取2名同學(xué)做良好習(xí)慣監(jiān)督員,請用列表法或樹狀圖法求出恰好抽到2名女生的概率.
【答案】(1)50;(2)2.6;(3)104000元;(4).
【解析】試題分析:(1)由B類型的人數(shù)及其百分比求得總?cè)藬?shù),在用總?cè)藬?shù)減去其余各組人數(shù)得出C類型人數(shù),即可補(bǔ)全條形圖;
(2)由各類的人數(shù)可得其總消費(fèi),進(jìn)而可求出該班同學(xué)用于飲品上的人均花費(fèi)是多少元;
(3)用總?cè)藬?shù)乘以樣本中的人均消費(fèi)數(shù)額即可;
(4)用列表法或畫樹狀圖法列出所有等可能結(jié)果,從中確定恰好抽到一名男生和一名女生的結(jié)果數(shù),根據(jù)概率公式求解可得.
試題解析:解:(1)∵抽查的總?cè)藬?shù)為:20÷40%=50人,∴C類人數(shù)=50﹣20﹣5﹣15=10人,補(bǔ)全條形統(tǒng)計(jì)圖如下:
(2)該班同學(xué)用于飲品上的人均花費(fèi)=(5×0+20×2+3×10+4×15)÷50=2.6元;
(3)我市初中生每天用于飲品上的花費(fèi)=40000×2.6=104000元.
(4)列表得:
或畫樹狀圖得:
所有等可能的情況數(shù)有20種,其中一男一女的有12種,所以P(恰好抽到一男一女)==.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解
∵<<,即2<<3.
∴的整數(shù)部分為2,小數(shù)部分為﹣2,
∴1<﹣1<2
∴﹣1的整數(shù)部分為1.
∴﹣1的小數(shù)部分為﹣2
解決問題:已知:a是﹣3的整數(shù)部分,b是﹣3的小數(shù)部分,
求:(1)a,b的值;
(2)(﹣a)3+(b+4)2的平方根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AC=BC=10 cm,AB=12 cm,點(diǎn)D是AB的中點(diǎn),連結(jié)CD,動點(diǎn)P從點(diǎn)A出發(fā),沿A→C→B的路徑運(yùn)動,到達(dá)點(diǎn)B時(shí)運(yùn)動停止,速度為每秒2 cm,設(shè)運(yùn)動時(shí)間為秒.
(1)求CD的長;
(2)當(dāng)為何值時(shí),△ADP是直角三角形?
(3)直接寫出:當(dāng)為何值時(shí),△ADP是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,AB⊥BC,CD⊥BC,垂足分別為B、C,AB=BC,E為BC的中點(diǎn),且AE⊥BD于F,若CD=4cm,則AB的長度為( 。
A. 4cm B. 8cm C. 9cm D. 10cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠A=∠C=90°,BE,DF分別是∠ABC,∠ADC的平分線.
(1)∠1與∠2有什么關(guān)系,為什么?
(2)BE與DF有什么關(guān)系?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】填注理由:
如圖,已知:直線AB,CD被直線EF,GH所截,且∠1=∠2,
試說明:∠3+∠4=180°.
解:∵∠1=∠2 (______________)
又∵∠2=∠5 (________)
∴∠1=∠5 (________)
∴AB∥CD (________)
∴∠3+∠4=180(________)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,點(diǎn)E、F分別在BC、CD上,△AEF是等邊三角形,連接AC交EF于G,下列結(jié)論:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤ ,其中正確結(jié)論有( )個(gè)
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:直線AB∥CD,點(diǎn)M,N分別在直線AB,CD上,點(diǎn)E為平面內(nèi)一點(diǎn).
(1)如圖1,∠BME,∠E,∠END的數(shù)量關(guān)系為 (直接寫出答案);
(2)如圖2,∠BME=m°,EF平分∠MEN,NP平分∠END,EQ∥NP,求∠FEQ的度數(shù)(用用含m的式子表示)
(3)如圖3,點(diǎn)G為CD上一點(diǎn),∠BMN=n·∠EMN,∠GEK=n·∠GEM,EH∥MN交AB于點(diǎn)H,探究∠GEK,∠BMN,∠GEH之間的數(shù)量關(guān)系(用含n的式子表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com