【題目】如圖,已知⊙O的直徑AB垂直弦CD于點(diǎn)E,連接AD、BC、OC,且OC=5.
(1)若sin∠BCD=,求CD的長;
(2)若∠OCD=4∠BCD,求扇形OAC(陰影部分)的面積(結(jié)果保留π).
【答案】(1)CD=9.6;(2)S=.
【解析】
(1)由垂徑定理可得CE=DE,在直角三角形OCE中,利用勾股定理可得CE的長,乘以2即為CD的長;
(2)算出∠COB的度數(shù),也就求得了陰影部分的圓心角,利用扇形的面積公式計(jì)算即可.
(1)∵⊙O的直徑AB垂直弦CD于點(diǎn)E,
∴CE=DE
設(shè)EB=3x,則BC=5x,
∴CE=4x,
在直角三角形OCE中,
OC2=CE2+OE2,
52=(4x)2+(5﹣3x)2,
解得x=0或x=1.2,
∴CE=4x=4.8,
∴CD=2CE=9.6;
(2)∵AB⊥CD,
∴
∴∠COB=2∠BCD
∵∠OCD=4∠BCD,∠OBC=∠OCB,∠OCB+∠OBC+COB=180°,
∴∠BCD=15°,
∴∠OBC=75°,
∴∠BOC=30°,
∴∠AOC=150°
∴S=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,BC切⊙O于點(diǎn)B,連接CO并延長交⊙O于點(diǎn)D、E,連接AD并延長交BC于點(diǎn)F.
(1)試判斷∠CBD與∠CEB是否相等,并證明你的結(jié)論;
(2)求證:;
(3)若BC=AB,求tan∠CDF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】州政府投資3個(gè)億擬建的恩施民族高中,它位于北緯31°,教學(xué)樓窗戶朝南,窗戶高度為h米,此地一年的冬至這一天的正午時(shí)刻太陽光與地面的夾角最小為α,夏至這一天的正午時(shí)刻太陽光與地面的夾角最大為β.若你是一名設(shè)計(jì)師,請你為教學(xué)樓的窗戶設(shè)計(jì)一個(gè)直角形遮陽蓬BCD,要求它既能最大限度地遮擋夏天炎熱的陽光,又能最大限度地使冬天溫暖的陽光射入室內(nèi)(如圖).根據(jù)測量測得∠α=32.6°,∠β=82.5°,h=2.2米.請你求出直角形遮陽蓬BCD中BC與CD的長各是多少?(結(jié)果精確到0.1米)
(參考數(shù)據(jù):sin32.6°=0.54,sin82.5°=0.99,tan32.6°=0.64,tan82.5°=7.60)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程k2x2﹣2(k+1)x+1=0有兩個(gè)實(shí)數(shù)根.
(1)求k的取值范圍;
(2)當(dāng)k=1時(shí),設(shè)所給方程的兩個(gè)根分別為x1和x2,求(x1﹣2)(x2﹣2)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在大小為4×4的正方形網(wǎng)格中,是相似三角形的是( 。
A. ①和② B. ②和③ C. ①和③ D. ②和④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx經(jīng)過點(diǎn)A(4,0)、B(2,2),連接OB、AB.
(1)求拋物線的解析式;
(2)求證:△OAB是等腰直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑作半圓O交BC于點(diǎn)D,過點(diǎn)D作DE⊥AC,垂足為E.
(1)求證:DE是⊙O的切線;
(2)若CE=1,BC=6,求半圓O的半徑的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,CD是⊙O的直徑,AB與CD交于點(diǎn)E,點(diǎn)P是CD延長線上的一點(diǎn),AP=AC,且∠B=2∠P.
(1)求證:PA是⊙O的切線;
(2)若PD=,求⊙O的直徑;
(3)在(2)的條件下,若點(diǎn)B等分半圓CD,求DE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com