分析 (1)根據(jù)△OBM與△ODN全等,可以得出OM與ON相等的數(shù)量關(guān)系;(2)連接AC、BD,則通過判定△BOM≌△CON,可以得到OM=ON;(3)過點O作OE⊥BC,作OF⊥CD,可以通過判定△MOE≌△NOF,得出OE=OF,進(jìn)而發(fā)現(xiàn)點O在∠C的平分線上;(4)可以運用(3)中作輔助線的方法,判定三角形全等并得出結(jié)論.
解答 解:(1)若點O與點A重合,則OM與ON的數(shù)量關(guān)系是:OM=ON;
(2)仍成立.
證明:如圖2,連接AC、BD,則
由正方形ABCD可得,∠BOC=90°,BO=CO,∠OBM=∠OCN=45°
∵∠MON=90°
∴∠BOM=∠CON
在△BOM和△CON中
$\left\{\begin{array}{l}{∠OBM=∠OCN}\\{BO=CO}\\{∠BOM=∠CON}\end{array}\right.$
∴△BOM≌△CON(ASA)
∴OM=ON
(3)如圖3,過點O作OE⊥BC,作OF⊥CD,垂足分別為E、F,則∠OEM=∠OFN=90°
又∵∠C=90°
∴∠EOF=90°=∠MON
∴∠MOE=∠NOF
在△MOE和△NOF中
$\left\{\begin{array}{l}{∠OEM=∠OFN}\\{∠MOE=∠NOF}\\{OM=ON}\end{array}\right.$
∴△MOE≌△NOF(AAS)
∴OE=OF
又∵OE⊥BC,OF⊥CD
∴點O在∠C的平分線上
∴O在移動過程中可形成線段AC
(4)O在移動過程中可形成直線AC.
點評 本題主要考查了四邊形中的正方形,解決問題的關(guān)鍵是作輔助線構(gòu)造全等三角形.解題時需要運用全等三角形的判定與性質(zhì),以及角平分線的判定定理.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{8}$ | B. | $\sqrt{3}$ | C. | $\sqrt{12}$ | D. | $\sqrt{6}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,0) | B. | (1,$\frac{1}{2}$) | C. | ($\frac{6}{5}$,$\frac{3}{5}$) | D. | ($\frac{10}{7}$,$\frac{5}{7}$) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
分 數(shù) 段 | 頻數(shù) | 頻率 |
60≤x<70 | 9 | a |
70≤x<80 | 36 | 0.4 |
80≤x<90 | 27 | b |
90≤x≤100 | c | 0.2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 55° | B. | 65° | C. | 75° | D. | 85° |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com