8.現(xiàn)有正方形ABCD和一個以O(shè)為直角頂點的三角板,移動三角板,使三角板兩直角邊所在直線分別與直線BC、CD交于點M、N.
(1)如圖1,若點O與點A重合,則OM與ON的數(shù)量關(guān)系是OM=ON;
(2)如圖2,若點O在正方形的中心(即兩對角線交點),則(1)中的結(jié)論是否仍然成立?請說明理由;
(3)如圖3,若點O在正方形的內(nèi)部(含邊界),當(dāng)OM=ON時,請?zhí)骄奎cO在移動過程中可形成什么圖形?
(4)如圖4,是點O在正方形外部的一種情況.當(dāng)OM=ON時,請你就“點O的位置在各種情況下(含外部)移動所形成的圖形”提出一個正確的結(jié)論.(不必說明)

分析 (1)根據(jù)△OBM與△ODN全等,可以得出OM與ON相等的數(shù)量關(guān)系;(2)連接AC、BD,則通過判定△BOM≌△CON,可以得到OM=ON;(3)過點O作OE⊥BC,作OF⊥CD,可以通過判定△MOE≌△NOF,得出OE=OF,進(jìn)而發(fā)現(xiàn)點O在∠C的平分線上;(4)可以運用(3)中作輔助線的方法,判定三角形全等并得出結(jié)論.

解答 解:(1)若點O與點A重合,則OM與ON的數(shù)量關(guān)系是:OM=ON;
(2)仍成立.
證明:如圖2,連接AC、BD,則
由正方形ABCD可得,∠BOC=90°,BO=CO,∠OBM=∠OCN=45°
∵∠MON=90°
∴∠BOM=∠CON
在△BOM和△CON中
$\left\{\begin{array}{l}{∠OBM=∠OCN}\\{BO=CO}\\{∠BOM=∠CON}\end{array}\right.$
∴△BOM≌△CON(ASA)
∴OM=ON
(3)如圖3,過點O作OE⊥BC,作OF⊥CD,垂足分別為E、F,則∠OEM=∠OFN=90°
又∵∠C=90°
∴∠EOF=90°=∠MON
∴∠MOE=∠NOF
在△MOE和△NOF中
$\left\{\begin{array}{l}{∠OEM=∠OFN}\\{∠MOE=∠NOF}\\{OM=ON}\end{array}\right.$
∴△MOE≌△NOF(AAS)
∴OE=OF
又∵OE⊥BC,OF⊥CD
∴點O在∠C的平分線上
∴O在移動過程中可形成線段AC
(4)O在移動過程中可形成直線AC.

點評 本題主要考查了四邊形中的正方形,解決問題的關(guān)鍵是作輔助線構(gòu)造全等三角形.解題時需要運用全等三角形的判定與性質(zhì),以及角平分線的判定定理.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

18.先化簡,再求值:
(1)(x-2y)2+(x-y)(x-2y)-2(x-3y)(x-y),其中x=-4,y=2$\frac{1}{2}$.
(2)(a+b)(a-b)+(4ab2-8a2b2)÷4ab,其中a=2,b=1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

19.與$\sqrt{2}$是同類二次根式的為(  )
A.$\sqrt{8}$B.$\sqrt{3}$C.$\sqrt{12}$D.$\sqrt{6}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.襄陽市文化底蘊深厚,旅游資源豐富,古隆中、習(xí)家池、鹿門寺三個景區(qū)是人們節(jié)假日玩的熱點景區(qū),張老師對八(1)班學(xué)生“五•一”小長假隨父母到這三個景區(qū)游玩的計劃做了全面調(diào)查,調(diào)查分四個類別:A、游三個景區(qū);B、游兩個景區(qū);C、游一個景區(qū);D、不到這三個景區(qū)游玩.現(xiàn)根據(jù)調(diào)查結(jié)果繪制了不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖,請結(jié)合圖中信息解答下列問題:
(1)八(1)班共有學(xué)生50人,在扇形統(tǒng)計圖中,表示“B類別”的扇形的圓心角的度數(shù)為72°;
(2)請將條形統(tǒng)計圖補充完整;
(3)若張華、李剛兩名同學(xué),各自從三個景區(qū)中隨機選一個作為5月1日游玩的景區(qū),則他們同時選中古隆中的概率為$\frac{1}{9}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

3.已知菱形OABC在平面直角坐標(biāo)系的位置如圖所示,頂點A(5,0),OB=4$\sqrt{5}$,點P是對角線OB上的一個動點,D(0,1),當(dāng)CP+DP最短時,點P的坐標(biāo)為( 。
A.(0,0)B.(1,$\frac{1}{2}$)C.($\frac{6}{5}$,$\frac{3}{5}$)D.($\frac{10}{7}$,$\frac{5}{7}$)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.已知:△ABC內(nèi)接于⊙O,D是$\widehat{BC}$上一點,OD⊥BC,垂足為H.
(1)如圖1,當(dāng)圓心O在AB邊上時,求證:AC=2OH;
(2)如圖2,當(dāng)圓心O在△ABC外部時,連接AD、CD,AD與BC交于點P,求證:∠ACD=∠APB;
(3)在(2)的條件下,如圖3,連接BD,E為⊙O上一點,連接DE交BC于點Q、交AB于點N,連接OE,BF為⊙O的弦,BF⊥OE于點R交DE于點G,若∠ACD-∠ABD=2∠BDN,AC=5$\sqrt{5}$,BN=3$\sqrt{5}$,tan∠ABC=$\frac{1}{2}$,求BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

20.秋季新學(xué)期開學(xué)時,紅城中學(xué)對七年級新生掌握“中學(xué)生日常行為規(guī)范”的情況進(jìn)行了知識測試,測試成績?nèi)亢细,現(xiàn)學(xué)校隨機選取了部分學(xué)生的成績,整理并制作成了如下不完整的圖表:
分 數(shù) 段頻數(shù)頻率
60≤x<709a
70≤x<80360.4
80≤x<9027b
90≤x≤100c0.2
請根據(jù)上述統(tǒng)計圖表,解答下列問題:
(1)在表中,a=0.1,b=0.3,c=18;
(2)補全頻數(shù)直方圖;
(3)根據(jù)以上選取的數(shù)據(jù),計算七年級學(xué)生的平均成績.
(4)如果測試成績不低于80分者為“優(yōu)秀”等次,請你估計全校七年級的800名學(xué)生中,“優(yōu)秀”等次的學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

17.如圖,AB∥CD,射線AE交CD于點F,若∠1=115°,則∠2的度數(shù)是( 。
A.55°B.65°C.75°D.85°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

18.如圖,⊙O的直徑CD=20cm,AB是⊙O的弦,AB⊥CD,垂足為M,若OM=6cm,則AB的長為16cm.

查看答案和解析>>

同步練習(xí)冊答案